Extrasolar planets from Gravitational microlensing

Shude Mao

National Astronomical Observatories of China & Univ. of Manchester

April 25, 2014@Quy Nhon, Vietnam

I. Introduction & current status

II. Principle of extrasolar planet detection with microlensing

III. Examples & statistics

IV. Future directions

What is near-field microlensing?

Time

microlensing produces "symmetric", non-repeating & achromatic light curves

Small prob.: 10⁻⁶

Where are we looking?

What do we see?

Challenges: probability~10⁻⁶, event rate ~ 10 events per year per 10⁶ stars.

Two decades of microlensing

- OGLE, MOA, MACHO etc. assembled time series for hundreds of millions of stars toward GC, LMC, SMC, etc.
- To date ~ 15,000 events have been detected
 - The vast majority of events are detected towards the Galactic bulge
 - Current event rate by OGLE & MOA
 ~2000/yr, most in real-time
 - Durations: days to years, A=I to thousands

A high mag. standard light curve

Blending in ground-based images

A star may be blended with other unrelated stars

- ✓ Reduces magnification
- Shortens the event duration ("iceberg" effect)

A short standard event

Exotic microlensing events

Standard light curve assumes single lens and point source with linear motions!

Extra features in exotic light curves give additional constraints to break the microlens degeneracy

Applications of microlensing

- Dark matter: MACHOS?
- Galactic structure/dynamics
 - CMDs, microlensing optical depth maps, proper motions (kinematics)
- High magnification events/caustic crossing events
 - Stellar atmosphere (limb-darkening)
 - Metallicity, surface gravity, ages of stars
- Binary mass function
- Stellar mass black holes
- Extrasolar planets (Beaulieu's talk)

I. Introduction & current status

II. Principle of extrasolar planet detection with microlensing

III. Examples & statistics

IV. Future directions

Microlensing: basic concepts

- Einstein radius r_E~ M^{1/2}, ~ few AU,
 coincident with size of the solar system!
- Einstein radius crossing time t_E ~ r_E/V,
 lasting for days to years → degeneracy!

Principle of planet detection

- The presence of the planet perturbs the image positions and magnifications
- Duration $\delta t \sim I \operatorname{day} (M/M_I)^{1/2}$
- In fact it can create one or three extra images! → caustics and critical curves

Caustics in the real world

Parallel rays from the Sun are piled into bright optical caustics by waves Wine glasses

In caustic crossing, a pair of images (dis)appears

critical curves and caustics for a point lens

magnification=∞

Evolution of caustics & critical curves

Binary mass ratio q=0.01

Light curves due to central & planetary caustics

- Central caustic crossing: peak, high S/N, easier to predict and observe; sensitive to multiple planets!
- Planetary caustic crossing can occur any time, more difficult to predict and time followup observations!

Binary lens modelling

- Number of parameters:
 ✓ Lens (q, a, t_E); source l₀, f_s; trajectory: u₀, θ
- Modelling gives t_E, mass ratio q, and dimensionless separation a
- Combined with other information (finite source size, parallax, lens light)
 - ✓ Finite source size + parallax
 - \rightarrow lens mass unique
 - ✓ Otherwise Bayesian analysis

Lenses: a, q, t_E

Outline

I. Introduction & current status

II. Principle of extrasolar planet detection with microlensing

III. Examples & statistics

IV. Future directions

First Microlensing planet

A cold, low-mass planet: OGLE-2005-BLG-390

(Beaulieu et al. 2006; Gould et al. 2006; Bennett et al. 2009; Sumi et al. 2010; Muraki et al. 2011; Furusawa et al. 2013)

First multiple extrasolar planet: OGLE 2005-BLG-071

Rotation, parallax and finite source size effects are all seen.

Physical Properties

AO Imaging from Keck

Host:

Mass = 0.51 +/- 0.05 MSun Luminosity ~ 5% LSun Distance = 1510 + - 120 pc**Planet b:** Mass = 0.73 + - 0.06 MJupSemimajor Axis = 2.3 +/- 0.5 AU Planet c: Mass = 0.27 + - 0.02 MJup = 0.90**Semimajor Axis = 4.6 +/- 1.5 AU** Eccentricity = 0.15+0.17-0.10

Inclination = 64+4-7 degrees

A Jupiter/Saturn Analog

Semi-major Axis Relative to Snow Line

Second multiple planets: OGLE-2012-BLG-0026

- $q_1 = 1.30 \times 10^{-4}, d_1 = 1.034$
- $q_2 = 7.84 \times 10^{-4}, d_2 = 1.304$
- t_E = 93.92 ± 0.58 days

Han et al. (2013)

Family Album of Microlensing Planets

Microlensing: pros & cons

Pros:

- \checkmark Wide range of host stars
- ✓ Disk/bulge/extragalactic (M31)
- ✓ Free-floating planets
- ✓ Good for providing statistics of cold rocky planets; complement other methods

Cons:

- \checkmark Too distant to observe
- \checkmark No repeated observations possible

Distinguishing characteristics

I don't understand. You are looking for planets you can't see around stars you can't see. Debra Fisher

- ✓ Based on GR
- ✓ Caustic crossings always come in pairs
- Local light curves close to caustics follow simple asymptotic relations

In some cases, the parameters can be determined using local expansions

Statistics in discovery space

- Mostly beyond snow line
- Low mass planets are more common
- Between 0.5-10 AU - 17% have Jupiters, 50% Neptune and Super-Earths

Cassan et al. (2012); Gould (2006, 2010)

Comparison with radial velocity

(Gould et al. 2010, Sumi et al. 2009, Cassan et al. 2012)

Free-floating planets

- Excess of short time scale events due to unbound or wideseparation planets.
- Implies roughly 2
 Jupiter-mass free floating planets per
 star. Hard to explain?
- Blending? Correlated data points? (Albrow 2014, Santa Barabara)

Frequency of multiple planets

Number of planetary systems				Total
Method	Total	Multiple	fraction (%)	Number
RV or astrometry	419	98	23.4	558
Transit	615	350	56.9	1133
Microlensing	27	2	7.4	29
Imaging	43	2	4.7	47
Pulsar/timing	11	2	18.2	14
All	1105	460	41.6	1783

Are fractions in different methods consistent with each other? Selection effects and degeneracy (Song, Mao et al. 2014).

Outline

I. Introduction & current status

II. Principle of extrasolar planet detection with microlensing

III. Examples & statistics

IV. Future directions

Current mode of discovery

Survey (MOA and OGLE collaborations) + follow-up (microFun/PLANET collaborations) *around the globe*

MicroFun - 24 hour relay

Near-Future: Upgraded Microlensing Experiments

- OGLE IV is running in full power since 2011: 1.4 Deg² camera
- MOA-II: I.8m
 telescope
 2.2 Deg² camera
- Current survey + followup will likely continue

OGLE, 32 CCDs

Microlensing within ~5 years: KMTNet

- KMTNet
 - Three I.6m telescope
 with ~4 deg² FoV, I0m
 cadence
 - -~2000 events per year
 - ~70 planets per year,depending on MF

Monte Carlo simulations (Zhu, Penny, Mao, Gould et al.)

- Planet population from Ida & Lin (2010)
- Choose primary star mass of 0.3 solar masses, and reasonable lens and source distances
- Orbital planes are randomly chosen
- all planets above 0.1 M_{earth} are retained
- Use rayshooting to generate light curves, with a cadence of 10min, as expected from KMTnet

A simulated light curve with an I.6 Earth-mass planet

A simulated light curve with two planets

No.3451 event ($\Delta \chi^2 = 5.67e + 03$)

 double lowmass planets
 q₁~7.45x10⁻³
 q₂~6.03x10⁻⁴

 Central +resonant caustics

ΔX²=5670

Statistical predictions

- Probability of planetary events is ~ 2.9%, out of which 5.5% is doubles
 - Central caustic crossing are more common for multiple-planet systems
- super-Earths:Neptunes:Jupiters ~1:1:1
 - Sensitive to Mars-mass planets close to the Einstein radius
- Planetary: central: resonant=107:128:78

Microlensing in ~10 years: space

- Space allows to observe in IR, and study fainter, smaller stars to discover very low-mass planets
- Direct lens-source separation partially/completely remove the degeneracies

Microlensing from space: Euclid

Penny, Kerins, Beaulieu, .. Mao

A simulated event at baseline and peak

VIS RIZ

NISP J

NISP H

baseline

peak

Euclid (2020) focus on weak lensing and BAO, but may have a microlensing component

NISP Y

Euclid sensitivities and yields

- Default MF: I/3 per log m per log a, flat log mass dependence
- total detections (-1.5<log M/Me<3): ~400, 6 Earths (range: 6-100 in different models)
- Sensitivity to free floating planets

A complete census of planets

 Space microlensing, together with other can potentially provide a complete census of the planet population

Summary

- Two decades of microlensing data have yielded large, still under-explored datasets
- Microlensing extrasolar planet detection complements other methods:
 - free-floating planets, planets in binaries, even extragalactic planets
 - -Current planetary rate: ~I5/yr
 - -KMTNet: a factor 5-10 increase in rate
 - space another factor of 5-10 down to lower masses with better determinations