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Context

• Observations suggest that even “quiet” stars 
have ΔRVactivity ≈ 1-2 m/s (Isaacson & Fischer 2010)

• Magnetic activity can lead to false detections 
(Queloz et al. 2001, Bonfils et al. 2007, Huélamo et al. 2008, Boisse 
et al. 2009, 2011)

• HARPS-N is looking for planets with 1-2 m/s 
amplitude, need to be able to trust results

For low mass planets: 
Radial-velocity (RV) signal entangled with stellar activity RV signatures
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I. Flux blocked by starspots on a rotating star

Single spot on Sun-like star ΔRV ≈ 0.38 m/s (Makarov et al. 2009)



Hot & bright 
outgoing flow 
➙ blueshift

Cool & dark 
sinking flow
➙ redshift

⇒ Net blueshift

Active regions suppress 
granulation blueshift

~ few m/s

II. Suppression of convective blueshift

Found to be dominant contribution to RVactivity 
(Meunier et al. 2010, Haywood et al. submitted)



• Faculae that are not associated with starspots

• ~ 50 m/s inflows towards active regions in the 
Sun (Gizon et al. 2001, 2010)

• Other... ?

III. Other potential stellar activity RV signals

Gizon et al. 2010
SDO/HMI intensitygram



Outline of this work

• Monte Carlo Markov Chain (MCMC) code

• RV model:
RVtotal = RVplanets+ RVactivity 

Sunspots

Granulation

Basis functions derived from lightcurve 
(FF’ method of Aigrain 2012)

Gaussian process with covariance 
properties of lightcurve
(Haywood et al., submitted)
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See Rassmussen & Williams 
(2006), Gibson et al. (2011)

A Gaussian process is encoded by a covariance function
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Quasi-periodic form:
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Using a Gaussian process to fit data

k (t, t’)

Lightcurve: 
naturally has covariance 

properties of star’s 
magnetic activity

RV basis function with covariance 
properties of lightcurve

train GP: determine θ₁, θ₂, θ₃, θ₄ 
of covariance function through 

MCMC simulation

predict GP: compute 
covariance matrix 

using k (t, t’)
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• HARPS radial-velocity campaign (2009) 
➡ another super-Earth CoRoT-7c (Queloz et al. 2009)

➡ sub-Neptune mass planet CoRoT-7d at 9 days (Hatzes et al. 2010)

• Many analyses, no agreement
Bruntt et al. 2010, Lanza et al. 2010, Pont et al. 2010, Boisse et al. 2010, Ferraz-Mello 
et al. 2011, Hatzes et al. 2011

• Jan. 2012: New observations: simultaneous CoRoT photometry & 
  HARPS RV

 

• G9, V=11.7

• CoRoT transit observations in 2009
➡ super-Earth CoRoT-7b (Léger et al. 2009)

Application to CoRoT-7



RVtotal = RVactivity + RVplanets

CoRoT lightcurve (transits of CoRoT-7b removed)

HARPS RV data

CoRoT-7 2012 simultaneous RV and photometry



If model RVs with only method of Aigrain (2012) and 2 planets, 
get correlated residuals:

Fit Gaussian process to residuals

Why the Gaussian process is needed



Outcome of MCMC for CoRoT-7
Haywood et al., submitted



• In case of CoRoT-7: 
- mb = 4.62 ± 0.89 M⊕ and mc = 13.62±1.06 M⊕

- signal at 9 days best explained as activity rather than a 
planet

• Accounting for stellar activity RV signals is key to detecting 
low-mass planets and determining their masses

• Can account for activity using method of Aigrain et al. (2012) 
+ Gaussian process trained on lightcurve (Haywood et al., 
submitted)

• Apply to Kepler systems observed with HARPS-N

Summary


