The Future of Ground-Based Transit Surveys

Exoplanetary Science, Rencontres du Vietnam
Quy Nhon, 20-26 April, 2014

Daniel Bayliss
Mt Stromlo Observatory, RSAA
Australian National University
Overview

1. Past - Beginning the Journey.
1. Past - Beginning the Journey
Moving Beyond the Solar System
Solar System - Long Odds

![Graph showing the probability of transit as a function of orbital distance for Earth and Jupiter. The graph is a logarithmic scale with the x-axis representing orbital distance in AU and the y-axis representing the probability of transit in percent. The probability decreases exponentially as the orbital distance increases.]
There were some brave souls
There were some brave souls

• “The photometric method of detecting other planetary systems”, Borucki & Summers, Icarus, Volume 58, Issue 1, April 1984
There were some brave souls

- “the detection of terrestrial-sized planets would require ... a spaceborne platform to avoid the effects of variations in sky transparency and scintillation”
There were some brave souls

• “The photometric method of detecting other planetary systems”, Borucki & Summers, Icarus, Volume 58, Issue 1, April 1984

• “the detection of terrestrial-sized planets would require ... a spaceborne platform to avoid the effects of variations in sky transparency and scintillation”

• “Because the probability is so small ... the search program must be designed to continuously monitor hundreds or thousands of stars”
There were some brave souls

- “the detection of terrestrial-sized planets would require ... a spaceborne platform to avoid the effects of variations in sky transparency and scintillation”
- “Because the probability is so small ...the search program must be designed to continuously monitor hundreds or thousands of stars”
- “Based on the stated assumptions, a detection rate of one planet per year of observation appears possible.”
1995: Hot planets discovered

4 day period!

Mayor & Queloz, 1995; Naef et al. 2004
Increasing the Odds

![Graph showing the probability of transit as a function of orbital distance (AU). The graph includes points for 51 Peg, Earth, and Jupiter. The probability of transit decreases with increasing orbital distance.](graph.png)
HD209458b - a transiting exoplanet

Charbonneau et al., 2000
Status and Prospects of Planetary Transit Searches: Hot Jupiters Galore

Keith Horne (kdh1@st-and.ac.uk)

Physics & Astronomy, St. Andrews University, KY16 9SS, Scotland, UK

Abstract. The first transiting extrasolar planet, orbiting HD 209458, was a Doppler wobble planet before its transits were discovered with a 10 cm CCD camera. Wide-angle CCD cameras, by monitoring in parallel the light curves of tens of thousands of stars, should find hot Jupiter transits much faster than the Doppler wobble method. The discovery rate could easily rise by a factor 10. The sky holds perhaps 1000 hot Jupiters transiting stars brighter than $V = 13$. These are bright enough for follow-up radial velocity studies to measure planet masses to go along with the radii from the transit light curves. I derive scaling laws for the discovery potential of ground-based transit searches, and use these to assess over two dozen planetary transit surveys currently underway. The main challenge lies in calibrating small systematic errors that limit the accuracy of CCD photometry at milli-magnitude levels. Promising transit candidates have been reported by several groups, and many more are sure to follow.

Horne, 2003
Some hold-ups

Some hold-ups
Some hold-ups

• Canonical “1% of stars have hot Jupiters” was wrong, leading to lower than expected yields.
Some hold-ups

• Canonical “1% of stars have hot Jupiters” was wrong, leading to lower than expected yields.

• Frequency appears to be a factor of 3 lower from ground-based (Bayliss & Sackett, 2011) and space-based transit surveys (Howard et al., 2012).
Some hold-ups

- Canonical “1% of stars have hot Jupiters” was wrong, leading to lower than expected yields.
- Frequency appears to be a factor of 3 lower from ground-based (Bayliss & Sackett, 2011) and space-based transit surveys (Howard et al., 2012).
- Discrepancy probably due to a less “clean” sample (particularly binaries), and lower mean [Fe/H] of targets.
2. Present - Hot Jupiters Galore
Transits now dominating discoveries.

![Graph showing the number of detections over time with categories: Radial Velocity, Transits, Microlensing, Imaging, Pulsar Timing.](image-url)
Counting Hot Jupiters

• Data from exoplanet.org:
 – $M_P > 0.1 M_J$
 – Period < 10 days
 – Uncertainty < 0.3 M_J & R_J

• 145 hot Jupiters
Highlight 1 - Densities
Highlight 2 - Spin Orbit Alignment
Highlight 2 - Spin Orbit Alignment

\[|\lambda| \text{(degrees)} \]

\[T_{\text{eff}*} \text{ (K)} \]

WASP-8
WASP-80
Kepler-13

Valsecchi & Rasio 2014
Highlight 3 - Transmission Spectroscopy

WASP-17b - Na detection (Snellan et al., 2008, Wood et al., 2011, Zhou & Bayliss 2012).
Highlight 4 - Emission Spectroscopy

WASP-19b

Zhou et al., 2013
NIR Ground based photometry

IRIS2/AAT
WASP-19b, Ks band
in prep.
3. Future - The Space Race
Space Missions

• The landscape is changing rapidly with planned space-based missions that mimic current ground-based surveys: bright-stars, wide-field and short period.

• Most important surveys (in chronological order):
 – Kepler K2
 – TESS
 – PLATO
Kepler K2

- On two reaction wheels, Kepler is limited to pointing near the ecliptic plane.
- Will point for ~80 days per field.
- FOV slightly narrower (8.5x8.5 degs)
Kepler K2

• More fuel burnt - Lifetime is therefore 2-3 years.
• Between 5,000 and 20,000 targets at 30mins. Due to new orbit, **primary mission**.
• Community targets + open data policy.
K2 Precision

Howell et al., 2014
TESS

• Scheduled for 2017
• 2 year, all-sky survey
• $4 < I_{\text{mag}} < 12$
• 1 month per field
• Two long-duration fields at ecliptic poles
• 500,000 target stars in two years
Planets that Transit Stars Brighter than V=10

Known Planets, March 2013
Predicted TESS Yield

Planet radius (Earth radii)

Sub-Neptune (<3.0 Earth radii)
Super-Earth (<2.0 Earth radii)
Earth (<1.25 Earth radii)

Orbital Period (days)
PLATO

- Scheduled for 2024
- 6 year mission at L2
- Two long-term target fields lasting 2–3 years each
- A step-and-stare phase where a large number of different fields are observed for up to 5 months per field.
- 50% of sky covered in the 6 years.
Ground-based surveys

• Is there still a case for ground-based transit surveys if these space missions are successful?
• PERHAPS - but parameter space needs to be selected with great care.
• We are now in a better position to robustly determine yields in advance.
Frequency of Exoplanets

Fressin et al., 2013
Low Mass Hosts

• TESS and PLATO are small aperture telescopes, which limits them to bright targets.
• Low mass stars are intrinsically faint, therefore ground-based surveys could focus on low mass stars fainter than TESS/PLATO will probe.
• MEarth is one such project.
Specialised Searches

• Searches in particular environments (e.g. clusters).
• Searches around particular hosts (e.g. white dwarfs, EcBs).
• Frequencies (therefore yields) less certain in some of these cases.
Long Period Planets

• TESS is all-sky, but will only stay on most fields for 27d.
• There is an opportunity for ground-based surveys to stay on fields for much longer. Antarctica provides an opportunity for such a project (Ji-Lin Zhou’s talk). Global networks such as HATSouth (Bakos et al., 2013) provide another opportunity.
Small Radii Planets

- TESS is scheduled for launch in 2017. It will survey northern hemisphere first.
- This window of time gives projects such as HATSouth and NGTS time to discover smaller radius transiting planets before TESS (Marion Neveu’s NGTS talk).
HATSouth Survey
HATSouth Network

- 11 < V < 15
- 700+ candidates
- 5 published planets
- Higher fraction of m-dwarfs hosts
- Higher fraction of hot Satsums/Neptunes.

Bakos et al., 2013
Hazards of the Ground

Jan 2013 Bushfire at SSO
Conclusions
Conclusions

• Ground based surveys delivered planets capable of characterisation (primarily Hot Jupiters).
Conclusions

• Ground based surveys delivered planets capable of characterisation (primarily Hot Jupiters).
• This will continue for next 4-5 years, pushing to longer periods and lower radii.
Conclusions

• Ground based surveys delivered planets capable of characterisation (primarily Hot Jupiters).
• This will continue for next 4-5 years, pushing to longer periods and lower radii.
• K2, TESS and PLATO will force ground-based surveys to find a specialised niche to remain relevant.
Conclusions

• Ground based surveys delivered planets capable of characterisation (primarily Hot Jupiters).
• This will continue for next 4-5 years, pushing to longer periods and lower radii.
• K2, TESS and PLATO will force ground-based surveys to find a specialised niche to remain relevant.
• There will be a huge demand for high precision RV follow-up… HARPS-East or HARPS-West?!