Biogenic O$_2$ detection on the Earth observed as a transiting exoplanet and perspectives with future ELTs for nearby Earth twins

Luc Arnold
Observatoire de Haute-Provence, CNRS

Aims:
- Characterize the Earth seen as a transiting planet (its atmospheric signature, biogenic species, etc.)
- Compare with / validate the model(s)
- Provide inputs for future observations, with larger telescopes (E-ELT).

Follow-up of first test observations with SOPHIE, August 2008 lunar eclipse (Vidal-Madjar et al 2010)

New results from HARPS and UVES dec. 2010 lunar eclipse
The Earth eclipses the Sun or *transits* across the Sun ...
Full moon spectrum \(F(\lambda) \)

Eclipse (penumbra) spectrum \(E(\lambda) \)

\[
E(\lambda) = F(\lambda) \times \frac{S - L \times h(\lambda)}{S_\odot}
\]

(Vidal-Madjar et al. 2010)

where \(S_\odot = \text{surface of the solar disk} \)

\(S = \text{surface of the solar crescent} \)

\(L \times h(\lambda) = \text{surface of the arc of Earth atmosphere in front of the Sun} \)

\(-\) if we are interested in \(h(\lambda) \) \(-\) we need to know \(S \) and \(L \)!
S is easily retrieved from flux ratio at an unabsorbed wavelength λ_0 for which $h(\lambda_0)=0$:

$$E(\lambda_0) = F(\lambda_0) \times \frac{S}{S_\odot}$$

- Once S is known, the length L can be calculated
- **we are interested in $h(\lambda)$, and S and L are now known!**
In practice:
• Correct S for Limb Darkening (even for $LD(\lambda)$, Hestroffer & Magnan 1998)

• To fix the solar crescent at a given size S during the exposures, the telescope has to track neither the stars nor the Moon, but a point *attached* to the Penumbra -> the Moon shifted in front of the spectrograph -> correct E and F for moon albedo variations along the slit path with Clementine data:

Reconstructed path of HARPS fibers over the Moon during one of the exposures.
• We want to correct all spectra for the signature of the atmosphere above the telescope

\[T(\lambda) = \left[\frac{F_1^{AM_1}(\lambda)}{F_2^{AM_2}(\lambda)} \right]^{1/(AM_1-AM_2)} \]

Fig. 4. La Silla atmosphere transmission function \(T(\lambda) \) for \(AM = 1 \)

Fig. 7. Paranal atmosphere transmission function \(T(\lambda) \) for \(AM = 1 \)
Calculation of $h(\lambda)$: 2 methods

• 1/ from one penumbra spectrum (Arnold et al. 2014)

$$h(\lambda) = \left(1 - \frac{E_A(\lambda)}{E_A(\lambda_0)} \times \frac{F_A(\lambda_0)}{F_A(\lambda)} \right) \times \frac{S_A}{L_A}$$

• 2/ from a pair of penumbra spectrum (SOPHIE has 2 fibers! Vidal-Madjar et al. 2010)

$$\left(\frac{E_A(\lambda)}{E_A(\lambda_0)} \times \frac{F_A(\lambda_0)}{F_A(\lambda)} - \frac{E_B(\lambda)}{E_B(\lambda_0)} \times \frac{F_B(\lambda_0)}{F_B(\lambda)} \right) = \left(\frac{L_B}{S_B} - \frac{L_A}{S_A} \right) \times h(\lambda)$$

\Rightarrow Vidal-Madjar et al. 2010 == difference between spectra gives better results
RESULTS

Signatures from:
• O₂
• Na
• Ozone: Chappuis band
• Rayleigh signature
Not detected (or barely):
• Water vapour
• In green:
 Ehrenreich et al. 2006 model
PRINCIPLE

A 3rd method: *direct measurement* of the Earth radius versus wavelength!
A 3rd method: *direct measurement* of the Earth radius versus wavelength!

But this method is biased by refraction (use of photons from the Umbra = refracted photons, which are lost in a real transit)

Refraction of red light in the deep atmospheric layers makes the Earth smaller than reality in the red!

Fortunately, it can be corrected (at least partially)
RESULTS

HARPS

UVES
RESULTS

- HARPS and UVES detect O3, O2, Water (> 7000Ang), Na, Rayleigh scattering
- O2 A-band peaks at about 30 km above the continuum

DISCUSSION

- Observation in acceptable agreement with the models (Ehrenreich et al. 2006)

Refraction slightly reduces the effective height for a exoplanet transit (Bétrémieux & Kaltenegger 2014, submitted)
DISCUSSION

The big question: Will O$_2$ A-band (7600 Ang) be detectable with the E-ELT?

- Model from Hedelt et al. 2013 A&A
- G2V star @ 10 pc, 1 single transit
- E-ELT 39m telescope
- Detector CCD charact. from EPICS
- Broad filters (selecting O$_2$-A etc.)

Assuming *perfect sky, no atmospheric perturbation*

Use High-Resolution Spectroscopy to better isolate the exo O$_2$ from the terrestrial O$_2$, and benefit from the numerous O$_2$ lines in the A-band (Vidal-Madjar et al. 2010, Snellen et al. 2013, Rodler & Lopez-Morales 2014, ...)

DISCUSSION

- Improve duty cycle
- Use Image slicer

 Reduce time from 33-65 to approx. 3 years without red noise

From Rodler & Lopez-Morales 2014:
- For red noise level = 40% white noise -> x 2 the required observing time
- Target observability constraints (airmass >2, night time etc.)

>> 10 years at least ?
CONCLUSION

• Observations of the Earth as a transiting planet confirm the model
• O₂ is detected for Earth

• Will O₂ be detectable on an nearby Earth twin around a G2V star with ground based ELTs?

• If we are lucky enough to detect a Earth-like planet around a nearby solar-like star...
 • probably >>10 transits (10 years) will be needed
 • High-resolution spectroscopy O₂
 • Needed (?)
 • dedicated instrument (not CCD-based?)
 • progress in real-time atmospheric monitoring (LIDAR)