
BSM physics after 
LHC8 

Andreas Weiler
(DESY)

Rencontres du Vietnam | Inaugural Conference  
Windows on the Universe



De-motivation

It’s always darkest just before it goes pitch black.



The SM rules
Agrees with all collider-based 
tests

Accidental symmetries of SM 
are fully observed (B,L)

Small breaking of global 
symmetries (flavor, SU(2)V) 
measured as predicted



105 TeV

Generic new physics must be at ⇤ � TeV

Flavor must be aligned with the SM, 
or SM-like 
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LHC BSM summary:
limits, limits, limits… 



Why go beyond the 
SM?



Dark matter? 
Dark Energy? 
Origin of quark mass and mixing hierarchies?  
Strong CP? 
EW strong coupling/unitarity problem?
Matter-Antimatter asymmetry? 
Neutrino masses? 
Inflation? 
Quantum instability of Higgs mass?
Charge quantization (GUT?)? 
Quantum Gravity? 
… ✓



Why expect new 
physics

at the LHC?



Dark matter?   10-15 GeV ? 1012 GeV ?     
Dark Energy? 
Origin of quark mass and mixing hierarchies?  
Strong CP? 
EW strong coupling/unitarity problem
Matter-Antimatter asymmetry?  100 GeV? 1013 GeV ?
Neutrino masses?   1013 GeV ? 100 GeV?     
Inflation? 
Quantum instability of the Higgs mass   
Charge quantization (GUT?)? 
Quantum Gravity?  TeV or MPlanck … 
… 



Before the Higgs discovery

⇤ ⇡ 4⇡v ⇡ 3TeV

Energy
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Adding SM-like Higgs
SM works up to ⇤ � LHC

?



Adding SM-like Higgs
What if the coupling is not exactly like in the SM?

⇤ ⇡ 4⇡v �! 4⇡vp
1� a2



⇤ ⇡ 4⇡v �! 4⇡vp
1� a2

Even if we measure          ,  no guarantee for new 
physics in reach of LHC. 

a < 1

Example: composite pseudo-Goldstone Higgs:  

a =
q
1� (v/f)2 ⇡ 0.8 . . . 0.9

⇤ > 6 . . . 8TeV



So what should be our 
guiding principle?



“What’s the problem?”What’s the problem?

Weisskopf Phys. Rev.56 (1939) 72Weisskopf, Phys. Rev.56 (1939) 72
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The charge distribution, the electromagnetic field and
the self-energy of an electron are investigated. It is found
that;, as a result of Dirac's positron theory, the charge and
the magnetic dipole of the electron are extended over a
finite region„' the contributions of the spin and of the
fluctuations of the radiation field to the self-energy are
analyzed, and the reasons that the self-energy is only

logarithmically infinite in positron theory are given. It is
proved that the latter result holds to every approximation
in an expansion of the self-energy in powers of e'/hc. The
self-energy of charged particles obeying Bose statistics is
found to be quadratically divergent. Some evidence is
given that the "critical length" of positron theory is as
small as h/(mc) exp (—hc/e').

I. INTRODUCTION AND DISCUSSIONS OF
RESULTS

~ 'HE self-energy of the electron is its total
energy in free space when isolated from

other particles or light quanta. It is given by the
expression

W= T+ (l./87t) ~"(H'+8')dr.

Here T is the kinetic energy of the electron; II
and E are the magnetic and electric field
strengths. In classical electrodynamics the self-
energy of an electron of radius e at rest and
without spin is given by W mc'+e'/a and con-
sists solely of the energy of the rest mass and of
its electrostatic field. This expression diverges
linearly for an infinitely small radius. If the
electron is in motion, other terms appear repre-
senting the energy produced by the magnetic
field of the moving electron. These terms, of
course, can be obtained by a Lorentz transforma-
tion of the former expression.
The quantum theory of the electron has put

the problem of the self-energy in a critical state.
There are three reasons for this:
(a) Quantum kinematics shows that the radius

of the electron must be assumed to be zero. It is
easily proved that the product of the charge
densities at two different points, p(r —(/2)
Xp(r+(/2), is a delta-function e'8($). In other
words: if one electron alone is present, the
probability of finding a charge density simultane-
ously at two different points is zero for every.
finite distance between the points. Thus the
energy of the electrostatic field is infinite as

W,&——lim~, D~e'/a.

72

(b) The quantum theory of the relativistic
electron attributes a magnetic moment to the
electron, so that an electron at rest is surrounded
by a magnetic held. The energy

U „=(1/8~) tH'dr

of this field is computed in Section III and the
result is

U „=e'h'/(6s. m'c'a').
This corresponds to the field energy of a magnetic
dipole of the moment eh/2mc which is spread
over a volume of the dimensions a. The spin,
however, does not only produce a magnetic field,
it also gives rise to an alternating electric field.
The closer analysis of the Dirac wave equation
has shown' that the magnetic moment of the spin
is produced by an irregular circular Auctuation
movement (Zitterbewegung) of the electron
which is superimposed to the translatory motion.
The instantaneous value of the velocity is always
found to be c. It must be expected that this mo-
tion will also create an alternating electric field.
The existence of this field is demonstrated in
Section III by the computation of the expression

U, i——(I/Ss) t Z, 'dr.

There Z, is the solenoidal part (div. Z, =0) of the
electric field strength created by the electron.
The fact that the above expression does not
vanish for an electron at rest proves the existence
i E. Schroedinger, Berl. Ber. 1930, 418 (1930),



A light Higgs is unnatural

For 

V (h) = ✏⇤2h2 + �h4

hhi = 0

hhi = ⇤

Need: 
p
✏ ⇠ mW /⇤

✏ = ± O(1)



Naturalness

• Higgs mass is sensitive to high scale threshold 
(GUT, gravity,...)

• Enormous quantum corrections 
exceed Higgs mass physical value, need to fine-
tune parameters

See e.g. G. Giudice: 1307.7879

O(highest scale)

Naturalness : absence of special conspiracies 
between phenomena occurring at very different 
length scales

*

* Caveat emptor: What about the other naturalness disaster (CC)? 
Physics at MPlanck might be very different. Multiverse alternative?

http://arxiv.org/pdf/1307.7879v2.pdf
http://arxiv.org/pdf/1307.7879v2.pdf


Example:  add a very heavy scalar to the SM

M� � mH with ��|H|2|�|2



• Quadratic corrections:

• Need new physics to soften UV dependence,
e.g. supersymmetry

a cut-o↵ parameter, it is always best to frame the naturalness problem in a setup
where we replace ⇤ by an explicit particle mass scale, widely separated from the
weak scale. (Arguing whether the pure SM is natural or not is an ill-posed question
because, in the presence of a single mass scale, the naturalness problem cannot even
be formulated.) If we add to the SM potential V = m2

H |H|2+�|H|4 a new scalar field
� with a large mass M (M � mH) and an interaction ��|H|2|�|2, the electroweak
(EW) scale is destabilised by a logarithmically-divergent contribution

�m2
H ⇡ ��

16⇡2
M2 ln

M2

⇤2
+ . . . (2)

This is exactly what happens in traditional GUT models, where � is a field associated
with the breaking of the unified gauge group [2, 3]. This example shows that the
occurrence of the naturalness problem is unrelated to regularisation issues associated
with power divergences. This is even more evident in the case of a supersymmetric
extension of the SM, in which supersymmetry is broken by a very large stop mass m̃t

(m̃t � mH). The theory is free from quadratic divergences, and yet the EW scale is
badly destabilised by terms of the form

�m2
H =

3y2t
8⇡2

m̃2
t ln

m̃2
t

⇤2
+ . . . , (3)

where yt is the top Yukawa.
These simple examples illustrate some important (and well-known) features about

the issue of Higgs naturalness. The naturalness problem appears whenever new mas-
sive states, whose mass terms are invariant under the EW gauge group, are coupled
to the Higgs field. This is because mH is renormalised additively (as opposed to
multiplicatively), so that quantum corrections are parametrically uncorrelated with
the classical value of mH and can be numerically much larger. In turn, the additive
renormalisation comes from the fact that there is no symmetry enhancement in the
limit mH ! 0, as emphasised long ago by ’t Hooft [4]. Naively, one could think that,
in the limit in which the Higgs quadratic term is set to zero, the theory acquires a new
conformal symmetry, at least at the classical level. However, as mentioned before,
the naturalness problem can be meaningfully formulated only in the presence of a
mass scale M much larger than mH . If there is a large mass separation, conformal
symmetry is badly broken by M . If there is no large mass separation, we have no
naturalness problem to start with. As a result, in this context, conformal symmetry
is of no avail to address the naturalness problem. (We will see later a case in which
conformal symmetry could have something to do with naturalness.) The other les-
son we have learned from the previous examples is that the naturalness problem of
the Higgs is completely insensitive to the regularisation procedure. The vanishing of
quadratic divergences in dimensional regularisation has no bearing on the problem.

The next question is:

2
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… but new degrees better not be too far above mH

Example:  add a very heavy scalar to the SM

M� � mH with ��|H|2|�|2



Light Higgs

light stops1,2, sbottomL,
higgsinos, gluinos, …  

Electro-weak symmetry breaking 
& new physics in times of austerity

light top partners 
(Q=5/3,2/3,1/3), 
anything else ?

supersymmetry composite Higgs

?



MSSM stops vs. mH
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Figure 3: Renormalization group evolution from
the unification scale to the weak scale of gaug-
ino masses M

1

, M

2

, M

3

(green curves), of
the stop mass parameters m

˜tL
and m

˜tR
(full

and dashed blue curves, respectively), ytAt (red
dashed curve), mHu (black curve), in a configu-
ration leading to m

˜tR
⌧ m

˜tL
at the weak scale.

All masses are in GeV units and we assumed
the MSSM.

Figure 4: Gluino and light-stop masses result-
ing from a scan of the parameter space assum-
ing universal scalar and gaugino masses, and
the condition |At| < 3m

0

, at the GUT scale.
All points satisfy the mh ⇡ 126 GeV con-
straint and are colored according to the value of
m

˜t2
/m

˜t1
, as indicated on the right-handed axis.

For illustrative purposes lines corresponding to
M

3

/m

˜t1
= 1, 2, 3, 4 are also shown.

2.2 Constraints from the RG evolution

A numerically large splitting between m
˜tL

and m
˜tR

naturally arises from the evolution under

renormalization-group equations (RGE), provided scalar masses are significantly larger than

gaugino masses at the high scale. This can be understood by looking at the one-loop RGE

for third generation squark masses and mHu . Neglecting o↵-diagonal flavor-mixing terms we

have

8⇡2

dm2

˜tL

d log µ
= y2t Yt � 16

3
g2
3

M2

3

� 3g
2

M2

2

� 1

15
g2
1

M2

1

, (8)

8⇡2

dm2

˜tR

d log µ
= 2 y2t Yt � 16

3
g2
3

M2

3

� 16

15
g2
1

M2

1

, (9)

8⇡2

dm2

Hu

d log µ
= 3 y2t Yt � 3g

2

M2

2

� 3

5
g2
1

M2

1

, (10)

where µ is the renormalization scale, and

Yt = m2

˜tL
+m2

˜tR
+m2

Hu
+ A2

t . (11)

5

Delgado et al.

Even easier in NMSSM, …  



Direct stop searches
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Naturalness prefers split 
squarks

M

8 dof
(ũ, d̃)L, ũR, d̃R,

(c̃, s̃)L, c̃R, s̃R

t̃1

t̃2 b̃L

b̃R



• two stops and one (left-handed) sbottom, both below 500 � 700 GeV.

• two higgsinos, i.e., one chargino and two neutralinos below 200 � 350 GeV. In the

absence of other chargino/neutralinos, their spectrum is quasi-degenerate.

• a not too heavy gluino, below 900 GeV � 1.5 TeV.

There are some model-dependent motivations for augmenting this minimal spectrum with

additional light states. For example, there could also be a light gravitino at the bottom of the

spectrum because a low mediation scale is motivated by reducing the size of the logarithm

in Eqs. 6 and 7. Or, there could be an extra light neutralino (such as a bino or singlino)

motivated by dark matter. The rest of the superparticles may all be decoupled.

The relevant task is to determine the lower bounds on the masses of third generation

squarks, the gluino, and higgsinos, coming from direct collider searches, such as the searches

that have been performed so far at the 7 TeV LHC. This will be the subject of the following

sections.

As we will summarize in the next section, the LHC presently sets the strongest bounds

on the production of gluinos and the squarks of the first two generations. Therefore it is

worth discussing scenarios where the spectrum of the third generation squarks is lighter

than that of the first two generations [28, 38]. Scenarios of this type have less tension with

naturalness only if the squark masses are introduced in a flavor non-universal way at the

scale where SUSY breaking is mediated to the SSM sector. In fact, squark mass splittings

induced by renormalization group evolution originate from the same top Yukawa interactions

that correct the Higgs potential. Therefore, in flavor-blind SUSY mediation models, large

splittings between squarks in the IR actually increases the fine-tuning in the Higgs potential.

In particular, at one loop one has,

�m2
H ' 3

⇣
m2

Q3
� m2

Q1,2

⌘
' 3

2

⇣
m2

U3
� m2

U1,2

⌘
, (11)

where the squark mass splittings pose a lower bound on the amount of fine-tuning. The

implications of the LHC results on this class of models will be further discussed in Section V.

general, the phenomenology of SUSY searches. However the modifications caused by an extended Higgs

sector are most important for searches looking at direct electroweak-ino production, which is beyond the

LHC capabilities with 1fb�1. We therefore neglect this issue in the rest of the paper.

11

Splitting via renormalization group does not help

Higgs fine-tuning = RGE mass splitting

1-loop, LLog, 
tanß moderate

Papucci, Ruderman, AW ’11

Splitting via RGE?
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Splitting via RGE?

→ Flavor non-trivial susy 
breaking!



What if first 2 generation squark not degenerate?
Mahbubani, Papucci, GP, Ruderman & Weiler (12). 
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ũR, c̃R

d̃R, s̃R

Split, but MFV !
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(ũ, d̃)L, (c̃, s̃)L

 Everything degenerate                       Split, but MFV                                                  Anarchy!
Producing Top Quarks 

6 

Tevatron  

Fermilab 

1 km 

CDF 
D0 

Main Injector 

PIC 2009 – Kobe, Japan Bernd Stelzer, Simon Fraser University 

- The Energy Frontier -!

LHC 

CERN 

•! 1.96 TeV pp collider 

•! Run II started in 2001 

•! Record Inst. Lum. 3.6!1032 [cm-2sec-1] 

Most of the results 

•! 14 TeV pp collider 

•! Restart in Nov 2009 at 7 TeV 

•! Inst. Lum. 1032-1034 [cm-2sec-1] 

ATLAS 

CMS 

Brief outlook 

??

??

4

Degenerate Minimal Flavor Anarchy!

mSugra, CMSSM, 
pMSSM, … 



2

SSM SUSY
GSM ⇥ SU(3)F

FIG. 1: A depiction of flavor mediation where SUSY breaking is communicated to the SSM by both SM and flavor gauge
groups. SUSY breaking in a hidden sector is communicated by messenger superfields at one loop to the GSM ⇥ SU(3)F ⌘
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ SU(3)F gauge superfields, and at two loops to the SSM chiral superfields charged under these
symmetries. This generates standard gauge-mediated soft masses for the SM gauginos and approximately diagonal soft masses
for all SSM scalars. Sfermions of the first two generations obtain large, degenerate soft masses from flavor mediation with
small, generation-independent splittings due to gauge mediation from the SM gauge groups. Third-generation sfermions obtain
comparable soft mass contributions from all gauge groups.

symmetry, of which the SU(2) subgroup is gauged, which shields first-two-generation scalars from the hierarchy in
first-two-generation Yukawas. In this way, flavor mediation can deliver all the desired features of natural SUSY.

A complete model of flavor mediation is shown in Fig. 1, where both the flavor gauge group and SM gauge groups
participate in (Higgsed) gauge mediation to the supersymmetric standard model (SSM). Since the SM Higgs multiplets
do not carry flavor quantum numbers, they are naturally lighter than the flavored sfermions, as needed to minimize
fine-tuning. Since SM gauginos only get their masses from SM gauge mediation, they are also typically light. After
accounting for renormalization group (RG) e↵ects, the gluinos end up being a bit heavier than the third-generation
squarks, perfect for a natural SUSY spectrum.

The uniqueness of the anomaly-free SU(3)F leads to a number of interesting predictions. First, because the flavor
gauge group is broken by SM Yukawa matrices, the hierarchy between the third-generation squarks and the first- and
second-generation squarks cannot be made arbitrarily large. Thus, a discovery of light stops and sbottoms would yield
an upper bound for the masses of the remaining squarks. Second, in order for SU(3)F to be anomaly-free, both leptons
and quarks must be charged under the flavor symmetry, so one expects light staus and third-generation sneutrinos to
be accessible at LHC energies. Third, while generic natural SUSY models do not require a right-handed sbottom in
the spectrum, flavor mediation treats right-handed stops and sbottoms democratically, with the only splitting arising
from SM gauge mediation and RG e↵ects. Finally, flavor mediation preserves many of the desired features of SUSY
grand unified theories (GUTs). Since the anomaly-free SU(3)F does not require any new SM-charged chiral matter
and treats all matter multiplets equally, SUSY gauge coupling unification is preserved. Assuming gauge mediation is
the dominant source for gaugino masses, then SM gaugino masses also unify.

The outline for the remainder of this paper is as follows. In Sec. II, we introduce the anomaly-free SU(3)F flavor
gauge group and describe how it is broken. In Sec. III, we describe the physics of flavor mediation, and how the
massive flavor gauge bosons contribute to the sfermion spectra via Higgsed gauge mediation. We outline a complete
model in Sec. IV, detailing the generation of gaugino masses in Sec. IVA, the Higgs sector in Sec. IVB, and typical
sparticle spectra in Sec. IVC. We verify in Sec. V that flavor bounds are satisfied in this model. We sketch the key
predictions of our model in Sec. VI and conclude in Sec. VII.

II. THE GAUGED FLAVOR SYMMETRY

A. Motivating SU(3)F

A wide range of flavor symmetries have been proposed to explain some or all features of the quark and lepton mass
matrices and mixings. As our goal is to link SM flavor structures with a natural SUSY soft mass spectrum, we must
employ some additional guiding (or at least simplifying) principles to select a preferred gauged flavor symmetry.

First, the flavor symmetry should act equally on all three generations. There are SUSY models employing additional
gauged U(1), SU(2), or U(2) flavor symmetries that can achieve a natural SUSY spectrum [5, 6, 8, 10, 11, 13, 14, 26].
However, it is somewhat ad hoc to treat the first two generations separately from the third without some underlying
reason. By treating all generations on an equal footing, one can more easily obtain the SM mass and mixing structure.

Second, the flavor symmetry should act equally on lepton and quark multiplets in order to allow for a GUT
structure in the ultraviolet (UV). This is further motivation to treat all three generations equally, since U(1), SU(2),

Gauge Mediation

GSM = SU(3)⇥ SU(2)⇥ U(1)

GSM

see e.g. Giudice/Rattazzi review

Degenerate quarks!
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�GM, MGM
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SU(3)F

Gauge Mediation

Gauge Messenger Mediation

MSSM

or

NMSSM

Figure 1: A sketch of the model we are analysing. SUSY breaking is mediated to the visible
sector both by Standard Model gauge interactions (for instance, via ordinary chiral messenger
superfields) and by the higgsed SU(3)

F

(via its massive vector superfields).

are tiny because they are induced only at higher loop order. We therefore need to consider more
general models of gauge mediation where there are also contributions to the soft masses from
hidden-sector states charged under SU(3)

C

⇥ SU(2)
L

⇥ U(1)
Y

. The simplest such models are
models with weakly coupled chiral messenger superfields, such as minimal gauge mediation. For
concreteness, let us therefore assume that the matter and gaugino soft masses are as predicted
by minimal gauge mediation at the messenger scale M , i.e. given in terms of an SU(5) messenger
index N
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(6)

To these we add the gauge messenger contributions to the squark masses

�m2

Q,U,D = � g2

F

16⇡2

⇤2

F
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@
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0 0
0 7

6

0
0 0 8

3

1

A . (7)

We emphasize however that our mechanism as such does not rely on minimal gauge mediation:
Similar conclusions will be reached whenever one assumes that the squark masses are flavour-
blind (as they generally are in conventional gauge mediation without gaugeed flavour symmetries)
except for the gauge messenger contributions of Eq. (7). In particular, Eqs. (6) could be replaced
by the soft masses obtained from any model of general gauge mediation. Moreover, the mediation
scales for the chiral and gauge messengers could in general be distinct.

Assuming that ⇤
F

is comparable with ⇤
MGM

, the e↵ect on the spectrum will mostly depend
on the size of the extra gauge coupling g

F

. If g
F

is of the order of the Standard Model gauge
couplings or larger, the tachyonic one-loop squark masses of Eq. (7) will be dominant over the
positive two-loop squark masses of Eqs. (6), leading to an unrealistic spectrum. On the other

5

U(1): Kaplan, Kribs ’99; Craig, McCullough, Thaler ’12;
Brümmer, McGarrie, AW (to appear)

Flavor gauge bosons with 
flavor and susy breaking masses 
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of the massive flavour gauge bosons. As reviewed in the Appendix, the dominant e↵ect from this
sector is a tachyonic one-loop scalar mass squared given by

�m2
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5 , (8)

where F 2 = ||FX ||2 + ||F eX ||2, M2 = ||T ||2 + || eT ||2, and gF is the SU(3)F gauge coupling. Notice
that the e↵ect is largest for the third generation squarks, because in our model SUSY breaking is
associated with SU(3)F ! SU(2)F breaking. Now take gF such that the one-loop contribution
of Eq. (8) to the squark soft masses is of the same order as the two-loop contributions from
the chiral messengers. This leads to light stop and sbottom squarks while the first and second
generation are less a↵ected.

A well-known benefit of large stop masses is of course that they allow one to accommodate a 125
GeV Higgs boson. This is because the lightest Higgs mass receives loop corrections proportional
to log(mt̃1

mt̃2
/m2

t ). Another potentially large correction comes from the stop trilinear parameter
At. However, as was pointed out recently by several authors, it is generally very di�cult to
obtain a 125 GeV Higgs within pure gauge mediation because At is predicted to be zero at
the mediation scale (at least naively, see below). Lifting the lightest Higgs mass with only the
radiatively induced At then requires extremely heavy mt̃. These observations would thus seem
to disfavour our gauge messenger model. We will now argue that this is not the case, since these
arguments rest on unrealistic assumptions about SUSY breaking mediation. Within potentially
realistic scenarios, our gauge messenger contribution to the stop mass may indeed make it easier
to obtain a 125 GeV Higgs without having to resort to extreme parameter values.

The crucial point here has actually been well known for a long time, although it is often ignored
(as evidenced by the fact that phenomenological studies of “GMSB” benchmark scenarios are
still being conducted, and published): Pure gauge mediation has a µ/Bµ problem; any model
which solves this problem will generically give Higgs soft masses and trilinear terms which are
di↵erent from the naive gauge-mediated ones. Here by pure gauge mediation we mean any model
in which the visible and hidden sector are coupled only by Standard Model gauge interactions.
Then the higgsino mass parameter µ vanishes, as does the Higgs mass mixing parameter Bµ at
the messenger scale.2 To obtain realistic µ and Bµ terms, additional interactions between the
Higgs sector and the SUSY-breaking hidden sector are needed, but these will a↵ect also m2

Hu
,

m2
Hd

and the trilinear terms in a model-dependent manner. For phenomenological studies of
gauge mediation, it is therefore advisable to either rely on an explicit model which realizes this
(and which ideally should allow to calculate the resulting soft terms), or to leave all Higgs sector
soft terms as free parameters.

It is highly nontrivial to build a calculable model which solves the µ-Bµ problem in gauge
mediation, and the Higgs sector is not actually the focus of our study. We therefore choose to
treat µ, Bµ, m2

Hu
, m2

Hd
, and At as independent parameters, with the understanding that they

could emerge from a variation of any of the more complete models on the market. By contrast, the
soft terms in the matter and gaugino sectors are taken as predicted by minimal gauge mediation
with additional SU(3)F gauge messengers.

To match to the Standard Model at low energies, the model parameters must be chosen such that
both the electroweak scale and the lightest Higgs mass mh0 = 125 GeV are reproduced properly.

2There is a way to avoid this conclusion if one assumes that the origin of µ is unrelated to supersymmetry
breaking, that it happens to be of the order of the soft mass scale by accident, and that Bµ at lower scales is
induced radiatively. We will not consider this possibility as it leaves an unnatural coincidence of scales unexplained.

5

Negative contribution from gauge messengers

msquark12



What if first 2 generation squark not degenerate?
Mahbubani, Papucci, GP, Ruderman & Weiler (12). 
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(ũ, d̃)L, (c̃, s̃)L

M

8 dof
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(c̃, s̃)L, c̃R, s̃R

Everything degenerate         

M
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ũR, c̃R

d̃R, s̃R

Split, but MFV !
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(ũ, d̃)L, ũR, d̃R,
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ũR, c̃R

d̃R, s̃R

Split, but MFV !
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8 degenerate squarks 
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PDFs: all 4 flavor “sea” squarks can be rather light!
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
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are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
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vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
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gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
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(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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be rotated into each other at will. Supersymmetric contributions to FCNC processes will
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
the middle panel corresponds to an alignment-type scenario with first-generation squarks split from the second-generation. The
shaded blue region is excluded by flavor and CP violation constraints which apply to electroweak doublet squarks only, while
the singlet spectrum remains completely unconstrained; the right panel corresponds to an MFV-type scenario with split up-type
and down-type singlets, and doublets formally decoupled. The red dashed (dotted) lines represent the exclusion contour if the
LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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Nsignal = [multiplicity]⇥ [pdfs]⇥ [signal e�ciency]

8 degenerate squarks 
→ 1 light squark flavor

PDFs: all 4 flavor “sea” squarks can be rather light!
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
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vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
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gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
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0 neutral meson systems, and the decay b → sγ.56 After the Higgs
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(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
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are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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the corresponding Yukawa coupling matrix:
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
the middle panel corresponds to an alignment-type scenario with first-generation squarks split from the second-generation. The
shaded blue region is excluded by flavor and CP violation constraints which apply to electroweak doublet squarks only, while
the singlet spectrum remains completely unconstrained; the right panel corresponds to an MFV-type scenario with split up-type
and down-type singlets, and doublets formally decoupled. The red dashed (dotted) lines represent the exclusion contour if the
LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
the middle panel corresponds to an alignment-type scenario with first-generation squarks split from the second-generation. The
shaded blue region is excluded by flavor and CP violation constraints which apply to electroweak doublet squarks only, while
the singlet spectrum remains completely unconstrained; the right panel corresponds to an MFV-type scenario with split up-type
and down-type singlets, and doublets formally decoupled. The red dashed (dotted) lines represent the exclusion contour if the
LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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the corresponding Yukawa coupling matrix:
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gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
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d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)

38

t̃

t̃

u                                     c

c                                     u

D0 D̄0 G(1)

+ +

++

u                                    c

c                                    u

t                      t
    t                t

D0 D̄0

(b)

d s

s d

g g

d

s

s

ds

ss

s t̃

t̃

u                                     c

c                                     u

D0 D̄0 G(1)

+ +

++

u                                    c

c                                    u

t                      t
    t                t

D0 D̄0

ũ
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FIG. 3: Squark mass limits in three phenomenologically interesting scenarios with non-degenerate first- and second-generation
squarks. The left panel contains the least constrained scenario, with a single second-generation squark flavor split from all others;
the middle panel corresponds to an alignment-type scenario with first-generation squarks split from the second-generation. The
shaded blue region is excluded by flavor and CP violation constraints which apply to electroweak doublet squarks only, while
the singlet spectrum remains completely unconstrained; the right panel corresponds to an MFV-type scenario with split up-type
and down-type singlets, and doublets formally decoupled. The red dashed (dotted) lines represent the exclusion contour if the
LO mixed up-down squark production cross section is multiplied by a K-factor of 1.5 (2.0).

plot include the full dependence on the squark masses,
crucial when the splitting is large [29]. Although the sin-
glet squarks are kept degenerate with the corresponding
doublets for simplicity, their splittings are unconstrained
by flavor, and they could also be decoupled, resulting
in weaker LHC bounds (corresponding to the contour
�/�lim ⇠ 2), with unchanged flavor bounds. The right-
hand panel contains the limits in an MFV-type scenario,
with split up-type and down-type singlets, and doublets
formally decoupled. The red dashed (dotted) lines rep-
resent the exclusion contour if the LO mixed up-down
squark production cross section is multiplied by a K-
factor of 1.5 (2.0).

The surprisingly weak limits, in particular for squarks
of the second generation, demonstrate how ine↵ective
current searches are for light squarks. Re-optimizing
the ATLAS 2-6 jets plus MET search using only the
me↵ cut is not e↵ective: while the background grows
like m6

e↵ , the signal grows much more slowly, ensuring
that decreasing the me↵ cut makes things worse. It is
possible that the limits would improve on performing ei-
ther a full re-optimization including all cut variables, or
a shape analysis; such a study, however, is beyond the
scope of this paper. Instead, in Fig. 4, we compare the
limits for squark cross sections from various 7 TeV AT-
LAS and CMS jets plus MET searches (which have limits
for degenerate squarks that are competetive with those
of recent 8 TeV searches [33, 34]). We find indeed that
the most stringent bounds come from the more complex
shape-based analyses, such as the CMS razor search.

Conclusion: We have argued that a combination of
reduced e�ciencies and suppression due to PDFs leads
to constraints on non-degenerate squark masses (for the
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FIG. 4: Comparison between upper limits on squark pair-
production cross sections with a decoupled gluino and mass-
less neutralino, from 7TeV 5 fb�1 ATLAS and CMS jets plus
MET searches [15, 30–32]. We use the o�cial experimental
limits, except for the ATLAS search where we use our esti-
mate of the limit, simulating the search with ATOM (solid)
and PGS (dotted).

first two generations) that are significantly weaker than
those assuming eightfold degeneracy. For instance, an
O(400GeV) squark belonging to the second generation
can be buried in the LHC jets plus MET data. In the
above analysis we have neglected for simplicity the e↵ects
of squark mixing, which could be sizable in alignment
models. In addition, our reinterpreted limits, while as-
suming the bino is the lightest SUSY particle (LSP), are
still applicable for singlino or gravitino LSPs, or when ad-
ditional electroweak (e.g. higgsinos) and leptonic states
are present, but do not drastically alter the light squark
branching ratios. In spite of the dramatic increase of
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Why is the Higgs light?
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The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?

Q:

A #3:   Higgs as a composite NG boson  (combines #1 and #2)

Loops of pure composites 
vanish due to NG symmetry

= 0

NG symmetry broken by 
elementary-composite couplings: 

No pure composite effects due to 
Goldstone symmetry

Shift symmetry broken by 
elementary-composite couplings:

Kaplan;  Agashe et. al

Inspired by QCD: (pseudo) scalar pion is the lightest state

Shift symmetry…                            

                  … protects its mass.

Interactions are perturbative for 

⇡ ! ⇡ + c

E ⌧ 4⇡f



Light Higgs implies light fermionic top partners
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where �F 2 = |FL

Q4
|2 � 2|FR

Q4
|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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where �F 2 = |FL

Q4
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|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
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Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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Following the same approach
 for the minimal composite PGB Higgs model: hh

 = Decay-constant of the PGB Higgsf
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Light Higgs implies light fermionic top partners
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Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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and that the first term minimizes for m
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Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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Following the same approach
 for the minimal composite PGB Higgs model: hh

 = Decay-constant of the PGB Higgsf

Contino et al; Pomarol, Riva; 
Matsedonskyi,Panico,Wulzer ; Redi,Tesi; 

Marzocca,Serone,Shu;
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Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].

6

where we have used the fact that the physical top mass is given by

m
t

=
|M t

1(0)|q
2⇧tL

0 (0)⇧̃tR
0 (0)

hs
h

c
h

i . (20)

The convergence of Eq. (19) requires the Weinberg sum-rule lim
p!1 M t

1(p) = 0. This can be

achieved with just one resonance, ����
M t

1(p)

M t

1(0)

���� =
m2

Q

p2 +m2
Q

, (21)

where Q represents here the lightest resonance, that can either be a 4 or a 1 of SO(4), since this

procedure does not depend on its quantum numbers. We then have

m2
h

� N
c

⇡2

m2
t

f 2
m2

Q

, (22)

that provides an upper bound for the resonance mass:

m
Q

. 700 GeV
⇣ m

h

125 GeV

⌘✓160 GeV

m
t

◆✓
f

500 GeV

◆
. (23)

To obtain a convergent result for the Higgs mass from the full top-quark contribution of Eq. (18),

we must impose the two pairs of Weinberg sum-rules, lim
p!1 pn⇧

tL,R

1 (p) = 0 (n = 0, 2), that require

at least two resonances, Q(1)
1 ⌘ Q1 and Q

(4)
1 ⌘ Q4. We obtain

⇧
tL,R

1 = |FL,R

Q4
|2 (m2

Q4
�m2

Q1
)

(p2 +m2
Q4
)(p2 +m2

Q1
)
,

M t

1(p) = |FL

Q4
FR ⇤
Q4

|mQ4mQ1(mQ4 �m
Q1e

i✓)

(p2 +m2
Q4
)(p2 +m2

Q1
)

✓
1 +

p2

m
Q4mQ1

m
Q1 �m

Q4e
i✓

m
Q4 �m

Q1e
i✓

◆
, (24)

where we have defined FL

Q4
FR ⇤
Q4

= ei✓|FL

Q4
FR ⇤
Q4

| and set by a field redefinition FL

Q1
FR

Q1
to be real.

Eq. (24) together with Eq. (20) gives 3

m2
h

' N
c

⇡2

"
m2

t

f 2

m2
Q4
m2

Q1

m2
Q1

�m2
Q4

log

 
m2

Q1

m2
Q4

!
+

(�F 2)2

4f 2
hs2

h

c2
h

i
 
1

2

m2
Q4

+m2
Q1

m2
Q1

�m2
Q4

log

 
m2

Q1

m2
Q4

!
� 1

!#
, (25)

where �F 2 = |FL

Q4
|2 � 2|FR

Q4
|2. It is easy to see that the second term in Eq. (25) is always positive

and that the first term minimizes for m
Q4 ! m

Q1 where the Higgs mass saturates the lower-bound

Eq. (22). It is also important to notice that, considering only the top contributions to the Higgs

potential, one obtains that ↵ in Eq. (15) is proportional to �F 2, meaning that the condition ↵ < �

requires small values for �F 2. In this limit, the Higgs mass comes entirely from the first term of

Eq. (25). In Figure 1 we show the value of the two lightest resonance masses for a Higgs mass

3A similar expression has also been obtained in the context of deconstructed MCHM [7].
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e.g. Perelstein, Pierce, Peskin
Contino, Servant; Mrazek, Wulzer ;

 De Simone, Matsedonkyi, Rattazzi, Wulzer
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Figure 1: Typical single and pair production diagrams for T
5/3

and B for signals with two positively
charged leptons. We notice that for T

5/3

the leptons always comes from its decay, while for B they
originate in two di↵erent legs.

and correspond, when going to the unitary gauge and making use of the Equivalence Theorem, to vertices
with the longitudinal EW bosons. From the Lagrangian above it is easy to see that only the B and the
T

5/3

partners will be visible in the final state we want to study, which contains two hard and separated
same–sign leptons; the pair and single production diagrams are shown in fig. 1.

The couplings �B = Y ⇤
t sin 't cos 'q = yt/ tan'q and �T = Y ⇤

t sin 't = yt/ sin 'q are potentially
large since Y ⇤

t is large, as we have discussed, and for sure �T � yt ' 1. But they will actually be
bigger in realistic models where the amount of compositeness of qL, sin'q, cannot be too large. The bL

couplings have indeed been measured with high precision and showed no deviations from the SM. Large
bL compositeness would have already been discovered, for instance in deviations of the ZbLbL coupling
from the SM prediction. Generically, corrections �gL/gL ⇠ sin 'q

2 (v/f)2 [11] are expected which would
imply (for moderate tuning v/f /⌧ 1) an upper bound on sin 'q. It is however possible to eliminate such
contributions by imposing, as in the model of [8] (see also [22]), a “Custodial Symmetry for ZbLbL” [23]
which makes the correction reduce to �gL/gL ⇠ sin 'q

2 (mZ/⇤)2. Still, having not too big bL compositeness
is favored and further bounds are expected to come from flavor constraints in the B–meson sector. To be
more quantitative we can assume that sin'q < sin 't, i.e. that qL is less composite than the tR. This
implies sin'q <

p
(yt/Y ⇤

t ) and therefore �T >
p

(ytY ⇤
t ) & 2 and �B >

p
(ytY ⇤

t � y2

t ) &
p

3. We will
therefore consider �T,B couplings which exceed 2 and use the reference values of 2, 3, 4; smaller values for
both couplings are not possible under the mild assumption sin 'q < sin 't.

Our analysis, though performed in the specific model we have described, has a wide range of applica-
bility. The existence of the B partner is, first of all, a very general feature of the partial compositeness
scenario given that one partner with the SM quantum numbers of the bL must exist. Also, it interacts
with the tR as in eq. (4) due to the SU(2)L invariance of the proto–Yukawa term. The T

5/3

could on the
contrary not exist, this would be the case if for instance we had chosen representations Q = (2,1)

1/6

and
eT = (1,2)

1/6

for the partners (which is however strongly disfavored by combined bounds from �gb/gb and
T), or in the model of [11]. To account for these situations we will also consider the possibility that only
the B partner is present. 2 The existence of the T

5/3

is a consequence of the ZbLbL–custodial symmetry,
which requires that the B partner has equal T 3

L and T 3

R quantum number. This, plus the SO(4) invariance
of the proto–Yukawa, implies that the T

5/3

must exist and couple as in eq. (4). Our analysis, as we have
remarked, can also apply to Higgsless scenarios in both cases in which the custodian T

5/3

is present or
not. The results could change quantitatively in other specific models because for instance other partners
can be present and contribute to the same–sign dilepton signal, or other channels could open for the decay

2
In this case, our analysis perfectly applies to the model proposed in [11], where the tR is entirely composite, sin 't = 1,

and the coupling is large.
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Figure 3: Scatter plots of the masses of the lightest exotic state of charge 5/3 and of the lightest
e
T resonance for ⇠ = 0.2 (left panel) and ⇠ = 0.1 (right panel) in the three-site DCHM model.
The black dots denote the points for which 115 GeV  mH  130 GeV, while the gray dots have
mH > 130 GeV. The scans have been obtained by varying all the composite sector masses in the
range [�8f, 8f ] and keeping the top mass fixed at the value mt = 150 GeV.

T much lighter than the e
T can not happen for a light Higgs due to the presence of a lower bound

on the mT� , which will be discussed in details in the next section. In the region of comparable T�

and e
T� masses sizable deviations from eq. (44) can occur. These are due to the possible presence

of a relatively light second level of resonances, as already discussed.

The numerical results clearly show that resonances with a mass of the order or below 1.5 TeV

are needed in order to get a realistic Higgs mass both in the case ⇠ = 0.2 and ⇠ = 0.1. The

prediction is even sharper for the cases in which only one state, namely the e
T�, is light. In these

regions of the parameter space a light Higgs requires states with masses around 400 GeV for the

⇠ = 0.2 case and around 600 GeV for ⇠ = 0.1.

The situation becomes even more interesting if we also consider the masses of the other com-

posite resonances. As we already discussed, the first level of resonances contains, in addition to

the T� and e
T�, three other states: a top-like state, the T

2/3�, a bottom-like state, the B�, and an

exotic state with charge 5/3, the X

5/3�. These three states together with the T� form a fourplet

of SO(4). Obviously the X

5/3� cannot mix with any other state even after EWSB, and therefore

it remains always lighter than the other particles in the fourplet. In particular (see fig. 9 for a

schematic picture of the spectrum), it is significantly lighter than the T� . In fig. 3 we show the

scatter plots of the masses of the lightest exotic charge 5/3 state and of the e
T . In the parameter

space region in which the Higgs is light the X

5/3� resonance can be much lighter than the other
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QCD

necessary to reproduce the mass of the top. From this is follows that the left-handed partners are

often excluded up to 2 TeV and always below 1.5 TeV. This can be avoided in theory based on SU(2).

We emphasize that this an extremely strong bound that pushes the model into fine tuning territory.

In view of the recent discovery of a 125 GeV resonance [28] some of the fermions associated to the top

should be light if the theory shall remain natural. Recent analyses have shown that the lightest top

partner should be typically below 1 TeV in a natural theory [13]. In MFV scenarios the mass of the top

partners is the same as the one of the light generations, up to mixing e↵ects. Hence, we can translate

the bound on the light generations to a bound on the top partners. Moreover the contribution to the

potential of the light quarks is not negligible and will also contribute to the tuning.

5 Bounds Right-Handed Quark Partners

[TODO: Michele: WILL CHANGE THIS] Contrary to the left-handed partners, the right-

handed ones can couple strongly to the first generation. This leads to large cross sections for the single

production of up and down partners. As we will explain the dominant decay is into 2 or 3 jets leading

to multi jet final states. The majority of multi-jets searches at LHC assume a large missing energy

being motivated by supersymmetry. Typical missing energy cuts are of the order of few hundreds of

GeV’s. In our scenario, the missing energy in the event is a consequence of jet calibration accumulated

for all jets, typically below 50 GeV. Therefore, we do not expect supersymmetric searches to play a

role in constraining the parameter space of RH compositeness. Analysis of the relevant searches will be

done in the next two sections, separated into single production and double production. In particular

CMS and ATLAS searches will be recast to obtain exclusion limits for the heavy fermion partners.

Dedicated searches that could improve the bounds will be discussed in the section 6.

Before discussing the di↵erent analyses at the LHC let us review production and decay channel in

detail:

a) b) c) d)

e) f) g) h)

Figure 9: Fermion production modes: a) chromomagnetic s-channel, b) - c) single production and

d) -h) double production.
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The full analytic expression including the width of the heavy color octet has been used for the analyses.

This decay su↵ers from the octet being o↵-shell and phase space suppression. Finally a decay to SM

quarks plus a longitudinal W, Z or Higgs [12] is possible

�EW
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(Q ! q�) =
1

4⇡

m2

q

v2
cos2 �Ru

sin2 �Ru
mQ. (5.3)

Figure 11: Fermion decay channels: two body decay via the chromomagnetic operators, three body

decay via an o↵-shell color octet and electroweak two body decay.

In the MFV scenario the electroweak two body decay is entirely negligible for the first generation as

it is suppressed by the light quark mass over the vacuum expectation value. It can also be subleading

for the second while it is certainly dominant for the third generation. Note that this conclusion does

not hold in the anarchic scenario, in that case sin�Ru is smaller and the decay through electroweak

interactions dominates producing W,Z, h+ jets final states.

To avoid model dependence in what follows we only focus on first generation partners. For single

production the situation e↵ectively reduces to this while for double production this is a conservative

assumption and larger cross sections can often be obtained due to the flavor multiplicity. Because of

this our conclusions can be considered conservative.

The phenomenology and experimental strategies are strongly dependent on whether the two body

or three body decay dominates. Since this will result in either two or three jet final states. One

interesting fact is that for mQ < m⇢ two body and three body decay scale in the same way with the

masses. In figure 12 it is shown in what regions of parameter space the two body or three body decay

dominates. One should however keep in mind that other contributions could exist which possibly

15
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necessary to reproduce the mass of the top. From this is follows that the left-handed partners are

often excluded up to 2 TeV and always below 1.5 TeV. This can be avoided in theory based on SU(2).
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The full analytic expression including the width of the heavy color octet has been used for the analyses.

This decay su↵ers from the octet being o↵-shell and phase space suppression. Finally a decay to SM

quarks plus a longitudinal W, Z or Higgs [12] is possible
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decay via an o↵-shell color octet and electroweak two body decay.

In the MFV scenario the electroweak two body decay is entirely negligible for the first generation as

it is suppressed by the light quark mass over the vacuum expectation value. It can also be subleading

for the second while it is certainly dominant for the third generation. Note that this conclusion does

not hold in the anarchic scenario, in that case sin�Ru is smaller and the decay through electroweak

interactions dominates producing W,Z, h+ jets final states.

To avoid model dependence in what follows we only focus on first generation partners. For single

production the situation e↵ectively reduces to this while for double production this is a conservative

assumption and larger cross sections can often be obtained due to the flavor multiplicity. Because of

this our conclusions can be considered conservative.

The phenomenology and experimental strategies are strongly dependent on whether the two body

or three body decay dominates. Since this will result in either two or three jet final states. One

interesting fact is that for mQ < m⇢ two body and three body decay scale in the same way with the

masses. In figure 12 it is shown in what regions of parameter space the two body or three body decay

dominates. One should however keep in mind that other contributions could exist which possibly
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ŝ, MZ0 , 2msquark, . . .with 



Mass reach?

Solve for           .   

N
events

(M2

high

, s
high

, L
high

[fb�1])

N
events

(M2

low

, s
low

, L
low

[fb�1])
= 1

M2
high



Check:   ATLAS direct sbottom 

   7TeV, 2.05 fb�1

mb̃
1

= 250 GeV, the upper limit on mχ̃0
1
is reduced by 30 GeV.

 [GeV]
1b~m

100 200 300 400 500 600 700 800

 [G
eV

]
0 1
χ∼

m

0

100

200

300

400

500

600

 fo
rbi

dd
en

0
1χ∼

 b 
→ 1b~

-1CDF 2.65 fb
-1D0 5.2 fb

=7 TeVs, -1ATLAS 2.05 fb

0
1
χ∼ b → 1b~Sbottom pair production, 

=8 TeVs,  -1 Ldt = 20.1 fb∫
ATLAS  )theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

All limits at 95% CL

Figure 5. Expected and observed exclusion limits at 95% CL in the (mb̃
1

,mχ̃0
1
) mass

plane for the sbottom pair production scenario considered. The signal region providing

the best expected CLs exclusion limit is chosen at each point. The dashed (solid) lines

show the expected (observed) limits, including all uncertainties except for the theoretical

signal cross-section uncertainty (PDF and scale). The bands around the expected limits

show the ±1σ uncertainties. The dotted lines around the observed limits represent the

results obtained when moving the nominal signal cross section up or down by the ±1σ

theoretical uncertainty. Previous limits published by ATLAS [22], CDF [31] and D0 [32]

are also shown.

In the case of stop pair production with the stop decaying only into bχ̃±

1 , the
model depends on the masses of the three SUSY particles involved in the decay,

mt̃
1
, mχ̃±

1

and mχ̃0
1
. Limits are derived using the same procedure adopted for the

sbottom pair production scenario and are presented in Figure 6 under the additional
assumptions that mt̃

1
=300 GeV (upper left), mχ̃±
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=150 GeV (upper right), or for a

fixed value of the mass difference ∆m = mχ̃±
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−mχ̃0
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(lower right). Stop masses up to 580 GeV (440 GeV) are excluded for ∆m = 5 GeV

(20 GeV) and for mχ̃0
1
= 100 GeV. For ∆m = 5 GeV (20 GeV), neutralino masses

up to 270 GeV (220 GeV) are excluded for mt̃
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= 420 GeV. In the ∆m = 20 GeV,

a smaller fraction of the (mt̃
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, mχ̃0
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) plane is excluded since this scenario has a lower

efficiency given that electrons and muons often have a pT above the reconstruction
threshold.
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1308.2631

ATLAS

8TeV, 20.1 fb�1 >640 GeV
ATLAS

Parton luminosity 
estimate using gg-pdf’s

>620 GeV ✓
parton lumi

http://arxiv.org/pdf/1308.2631v1.pdf
http://arxiv.org/pdf/1308.2631v1.pdf


Gluon initiated processes (e.g. direct stop/sbottom)

8 TeV, 20 fb-1 → 14 TeV, 300 fb-1
G. Salam, AW
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High luminosity LHC
300 fb-1 →3000 fb-1 @ 14 TeV
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(e.g. EW production, rare decays, 
difficult spectra, … )
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Outlook
The battle for a natural resolution of the 
hierarchy problem goes on

LHC14 will be decisive: 2xEnergy → 4xTuning

Flavor non-trivial signals to be explored,
charm tagging, bumps in sub-leading jets

‘Absence of evidence is not evidence of absence’, 
still: some experimental guidance would be nice.




