BSM physics after LHC8

Andreas Weiler (DESY)

ERN 22:08:14 2012 CEST 000

Rencontres du Vietnam | Inaugural Conference Windows on the Universe

De-motivation

It's always darkest just before it goes pitch black.

The SM rules

Agrees with all collider-based tests

Accidental symmetries of SM are fully observed (B,L)

Small breaking of global symmetries (flavor, $SU(2)_V$) measured as predicted

Generic new physics must be at $\Lambda \gg TeV$

Flavor must be aligned with the SM, or SM-like

LHC BSM summary:

Why go beyond the SM?

Dark matter? Dark Energy? Origin of quark mass and mixing hierarchies? Strong CP? EW strong coupling/unitarity problem? Matter-Antimatter asymmetry? Neutrino masses? Inflation? Quantum instability of Higgs mass? Charge quantization (GUT?)? Quantum Gravity?

Why expect new physics at the LHC?

Dark matter? 10⁻¹⁵ GeV ? 10¹² GeV ? Dark Energy? Origin of quark mass and mixing hierarchies? Strong CP? EW strong coupling/unitarity problem Matter-Antimatter asymmetry? 100 GeV? 1013 GeV ? Neutrino masses? 10¹³ GeV ? 100 GeV? Inflation? Quantum instability of the Higgs mass <u>Charge quantization (GUT?)</u>? Quantum Gravity? TeV or MPlanck ...

Before the Higgs discovery

Before the Higgs discovery

Adding SM-like Higgs SM works up to $\Lambda \gg {\rm LHC}$

Adding SM-like Higgs

What if the coupling is not exactly like in the SM?

Even if we measure a < 1, no guarantee for new physics in reach of LHC.

Example: composite pseudo-Goldstone Higgs:

$$a = \sqrt{1 - (v/f)^2} \approx 0.8 \dots 0.9$$

 $\Lambda > 6 \dots 8 \,\mathrm{TeV}$

So what should be our guiding principle?

What's the problem? ?

Weisskopf, Phys. Rev.56 (1939) 72

What's the problem? m?

 $m_{\rm scalar}^2 \sim \Lambda^2$

On the Self-Energy and the Electromagnetic Field of the Electron

V. F. WEISSKOPF University of Rochester, Rochester, New York (Received April 12, 1939)

The charge distribution, the electromagnetic field and the self-energy of an electron are investigated. It is found that, as a result of Dirac's positron theory, the charge and the magnetic dipole of the electron are extended over a finite region; the contributions of the spin and of the fluctuations of the radiation field to the self-energy are analyzed, and the reasons that the self-energy is only logarithmically infinite in positron theory are given. It is proved that the latter result holds to every approximation in an expansion of the self-energy in powers of e^2/hc . The self-energy of charged particles obeying Bose statistics is found to be quadratically divergent. Some evidence is given that the "critical length" of positron theory is as small as $h/(mc) \cdot \exp(-hc/e^2)$.

Weisskopf, Phys. Rev.56 (1939) 72

A light Higgs is unnatural

 $V(h) = \epsilon \Lambda^2 h^2 + \lambda h^4$

For $\epsilon = \pm O(1)$ $\langle h \rangle = 0$ $\langle h \rangle = \Lambda$

Need: $\sqrt{\epsilon} \sim m_W / \Lambda$

Naturalness*

- Higgs mass is sensitive to high scale threshold (GUT, gravity,...)
- Enormous quantum corrections O(highest scale)exceed Higgs mass physical value, need to finetune parameters

Naturalness : absence of special conspiracies between phenomena occurring at very different length scales

> * Caveat emptor: What about the other naturalness disaster (CC)? Physics at M_{Planck} might be very different. Multiverse alternative?

Example: add a very heavy scalar to the SM $M_\Phi \gg m_H$ with $\lambda_\Phi |H|^2 |\Phi|^2$

Example: add a very heavy scalar to the SM $M_{\Phi} \gg m_H$ with $\lambda_{\Phi} |H|^2 |\Phi|^2$

• Quadratic corrections: $\delta m_H^2 \approx \frac{\lambda_\Phi}{16\pi^2} M^2 \ln \frac{M^2}{\Lambda^2} + \dots$

 Need new physics to soften UV dependence, e.g. supersymmetry

Example: add a very heavy scalar to the SM $M_{\Phi} \gg m_H$ with $\lambda_{\Phi} |H|^2 |\Phi|^2$

• Quadratic corrections: $\delta m_H^2 \approx \frac{\lambda_\Phi}{16\pi^2} M^2 \ln \frac{M^2}{\Lambda^2} + \dots$

 Need new physics to soften UV dependence, e.g. supersymmetry

$$\delta m_H^2 = \frac{3y_t^2}{8\pi^2} \tilde{m}_t^2 \ln \frac{\tilde{m}_t^2}{\Lambda^2} + \dots$$

... but new degrees better not be too far above m_H

Electro-weak symmetry breaking & new physics in times of austerity

MSSM stops vs. mH

4000 10 9 m_{Hu} 8 3000 Stop mass ratio $m_{\tilde{t}_2}/m_{\tilde{t}}$ Gluino mass in GeV 6 2000 5 4 M_{3} 1000 3 M_{γ} 2 200 400 600 800 1000 10^{12} 0 10¹⁶ 0^{10} 10¹⁴ e in GeV Lightest stop mass in GeV

Even easier in NMSSM, ...

Direct stop searches

Direct stop searches

Naturalness prefers split squarks

8 dof $\begin{array}{l}
(\tilde{u},\tilde{d})_L, \ \tilde{u}_R, \ \tilde{d}_R, \\
(\tilde{c},\tilde{s})_L, \ \tilde{c}_R, \ \tilde{s}_R
\end{array}$

Splitting via RGE?

Papucci, Ruderman, AW '11

Splitting via renormalization group does not help

$$\delta m_H^2 \simeq 3 \left(m_{Q_3}^2 - m_{Q_{1,2}}^2 \right) \simeq \frac{3}{2} \left(m_{U_3}^2 - m_{U_{1,2}}^2 \right)$$

Higgs fine-tuning = RGE mass splitting

I-loop, LLog, tanß moderate

Splitting via RGE?

Papucci, Ruderman, AW '11

Splitting via renormalization group does not help

$$\delta m_H^2 \simeq 3 \left(m_{Q_3}^2 - m_{Q_{1,2}}^2 \right) \simeq \frac{3}{2} \left(m_{U_3}^2 - m_{U_{1,2}}^2 \right)$$

I-loop, LLog, tanß moderate

Higgs fine-tuning = RGE mass splitting

→ Flavor non-trivial susy breaking!

 $ilde{u}_R, \; ilde{c}_R$

Degenerate

Minimal Flavor

Sugra, CMSSM, MSSM, COF Main Injector

• 1.96 TeV pp collider

• 14 TeV pp collider

Anarchy!

Gauge Mediation

see e.g. Giudice/Rattazzi review

$G_{\rm SM} = SU(3) \times SU(2) \times U(1)$

Degenerate quarks!

* Diagonal, anomaly-free subgroup of SM w/o Yukawas $SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R}$

Natural Split spectrum

Brümmer, McGarrie, Weiler (to appear)

Negative contribution from gauge messengers

• 1.96 TeV pp collider

• 14 TeV pp collider

 $N_{\text{signal}} = [\text{multiplicity}] \times [\text{pdfs}] \times [\text{signal efficiency}]$

 $N_{\text{signal}} = [\text{multiplicity}] \times [\text{pdfs}] \times [\text{signal efficiency}]$

8 degenerate squarks→ I light squark flavor

Strong EWSB (Composite Higgs)

from 1204.6333

 $\xi = 0.2$

Flavor used to be a showstopper

CPV in Kaon mixing

 $|\epsilon| = 2.3 \times 10^{-3} \implies \frac{M_{ETC}}{g_{ETC} \sqrt{\text{Im}(V_{sd}^2)}} \gtrsim 16,000 \text{ TeV}$

$$m_{q,\ell,T}(M_{ETC}) \simeq rac{g_{ETC}^2}{2M_{ETC}^2} \langle \bar{T}T \rangle_{ETC} \lesssim rac{0.1 \,\mathrm{MeV}}{|V_{sd}|^2 N^{3/2}}$$
 VS. Mtop

*for RS realization: Csaki,AW et al; Delaunay et al; da Rold; see also Barbieri et al

Composite *u,d* quarks, spectacular signals!

 $m_{top}: \quad \sin \theta_R \gtrsim \frac{1}{g_\rho} \sim \frac{1}{8}$

*for RS realization: Csaki,AW et al; Delaunay et al; da Rold; see also Barbieri et al

QCD

VS.

Composite Partners

bump in sub-leading jets

QCD

VS.

Composite Partners

Discovery potential of a dedicated search

deVries, Redi, Sanz, AW, '13

The Future

What will we be sensitive to?

Simple exercise, parton luminosities:

$$\sigma(M^2) = \sum_{i,j} \int_{M^2/s}^{1} d\tau \, \mathcal{L}_{ij}(\tau) \, \hat{\sigma}(s\tau)$$

Partonic cross-section scales as

with $M = \sqrt{\hat{s}}, M_{Z'}, 2 m_{squark}, \dots$

 $(f_i(x_1))$

 $\hat{\sigma} \propto rac{1}{M^2}$

 x_1P_1

 $x_2 P_2$

 $\hat{\sigma}_{i}(\alpha_{s})$

Mass reach?

 $\frac{N_{\text{events}}(M_{\text{high}}^2, s_{\text{high}}, L_{\text{high}}[\text{fb}^{-1}])}{N_{\text{events}}(M_{\text{low}}^2, s_{\text{low}}, L_{\text{low}}[\text{fb}^{-1}])} = 1$

Solve for $M^2_{\rm high}$.

Check: ATLAS direct sbottom

 $[95\% CL, m_{LSP} = 0 \,\text{GeV}]$

$7 \,\mathrm{TeV}, \, 2.05 \,\mathrm{fb}^{-1} > 400 \,\mathrm{GeV}_{ATLAS}$

Check: ATLAS direct sbottom

 $[95\% CL, m_{LSP} = 0 \,\text{GeV}]$

7 TeV, $2.05 \,\text{fb}^{-1}$ >400 GeV ATLAS 8 TeV, $20.1 \,\text{fb}^{-1}$ >640 GeV ATLAS

Check: ATLAS direct sbottom

 $[95\% CL, m_{LSP} = 0 \,\text{GeV}]$

8 TeV, 20 fb⁻¹ \rightarrow 14 TeV, 300 fb⁻¹

G. Salam, AW

Gluon initiated processes (e.g. direct stop/sbottom)

8 TeV, 20 fb⁻¹ \rightarrow 14 TeV, 300 fb⁻¹

G. Salam, AW

Gluon initiated processes (e.g. direct stop/sbottom)

8 TeV, 20 fb⁻¹ \rightarrow 14 TeV, 300 fb⁻¹

G. Salam, AW

Gluon initiated processes (e.g. direct stop/sbottom)

8 TeV, 20 fb⁻¹ \rightarrow 14 TeV, 300 fb⁻¹

G. Salam, AW

High luminosity LHC $300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1} @ 14 \text{ TeV}$

$300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1} \textcircled{0} 14 \text{ TeV}$

G. Salam, AW

$300 \text{ fb}^{-1} \rightarrow 3000 \text{ fb}^{-1} \textcircled{0} 14 \text{ TeV}$

G. Salam, AW

Outlook

The battle for a natural resolution of the hierarchy problem goes on

LHCI4 will be decisive: $2 \times Energy \rightarrow 4 \times Tuning$

Flavor non-trivial signals to be explored, charm tagging, bumps in sub-leading jets

'Absence of evidence is not evidence of absence', still: some experimental guidance would be nice.