Rencontres du Vietnam

Aug 11 – 17 I C I S E

INAUGURAL CONFERENCE WINDOWS ON THE UNIVERSE

Measurement of Híggs boson properties at the LHC

Reisaburo Tanaka (LAL, Orsay) on behalf of ATLAS and CMS collaborations

> August 13, 2013 ICISE, Quy Nhon, Vietnam

<u>Híggs Boson Property Measurements</u>

- 1. Higgs boson mass (M_H) & decay width ($\Gamma_{\rm H}$)
- 2. Higgs couplings to gauge bosons (g_V) and fermions (g_F)
- 3. Higgs boson quantum numbers J^{PC} and tensor structure
- 4. Higgs potential Higgs self-coupling (λ)

K. Cranmer

The Standard Model Lagrangian - Higgs sector

 $\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)$

 $m_H = \sqrt{2}\mu = \sqrt{\lambda}v$ (v = vacuum expectation value)

The ultimate goal of particle physics of today is to fix the Standard Model (SM) Lagrangian and find the physics beyond the Standard Model (BSM). 2

1. Higgs Boson Mass

M_H - the only parameter not fixed in the Standard Model \Rightarrow Fixes $\lambda = \frac{M_H^2}{v^2}$. Most precisely determined with H $\rightarrow\gamma\gamma$ and 4 lepton channels.

 δM_H precision at 0.3% level (PDG2013: δM_W 187ppm, δM_Z 23ppm, δM_{top} 0.5%).

 $\sigma \cdot BR$ 2. The signal strength $\mu = \frac{1}{(\sigma \cdot \sigma)}$

CERN-PH-EP-2013-103 σ(stat) **Total uncertainty** σ(sys) $\pm 1\sigma \text{ on }\mu$ σ(theo) + 0.23 arXiv:1307.1427 - 0.22 + 0.17 - 0.13 0.17 + 0.35 arXiv:1307.1427

ATLAS

 \hookrightarrow

A. de Roeck, H. Gray : plenary talks T. Lenz, P. Bruckman de Renstrom : parallel talks

- Consistent with the SM prediction for both ATLAS and CMS with precision about 15% level.
- Theory uncertainty (QCD scale $\pm 8\%$ @NNLO and PDF+ $\alpha_s \pm 8\%$) is comparable to experimental and statistical uncertainties on the combined signal strength.

Evidence for vector-boson-fusion process

CMS PAS HIG-13-005

Destructive interference in both gg \rightarrow H (top-bottom) and H $\rightarrow\gamma\gamma$ (W-top) loops.

a) Higgs couplings to gauge bosons and fermions

L

5

0

-2

 $\mathcal{K}F$

2

\s = 7 TeV ∫Ldt = 4.6-4.8 fb⁻¹

 $\langle H \rightarrow | v |$

0.9

0.8

CMS Preliminary

 $s = 8 \text{ TeV} \int Ldt = 20.7 \text{ fb}^{-1}$

Solution Assume all fermion couplings scale as κ_F while all vector boson couplings scale as κ_V .

Solution \mathbb{P} Assume no BSM contributions to Γ_{H} .

\bigcirc Quad-fold ambiguity in sign of κ_F and κ_V .

- One relative sign is physical.
- Solution $\kappa_V > 0$ as convention and look for $\pm \kappa_{F.}$
- \Im $\kappa_{\rm F}$ <0 means sign of new physics.
- Almost degenerate minima in the likelihood: one for $\kappa_F > 0$ and the other for $\kappa_F < 0$.
- Solution Θ ATLAS H $\rightarrow \gamma \gamma$ prefers $-\kappa_F$ but $\kappa_F > 0$ for global fit.
- Solution Electroweak precision data constrain $\kappa_F > 0$. (:: with $\kappa_F < 0$, κ_V is further away from 1)

CERN-PH-EP-2013-103

 $H \rightarrow lv lv$

Combined

× Best Fit

 $H \rightarrow 4I$

 \blacksquare H $\rightarrow \gamma\gamma$

 $H \rightarrow 4I$

 $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$

SM Higgs O Fermiophobic Bkg. only

1.3

CMS PAS HIG-13-005

1.4

1.5

 κ_V

+ SM

b) Custodial, weak-isospin and quark-lepton symmetries

CMS:

RN-PH-EP-2013-103

 $H \rightarrow \gamma \gamma$, ZZ*, WW*

1.6

CMS PAS HIG-13-005

Observed

--- Exp. for SM H

1.5

1

 $[\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}]$

SM expected

1.4

Combined

1.2

c) Loop induced Higgs couplings: κ_{gluon} vs κ_{γ}

Solution Assume tree level couplings to SM particles as in the SM (i.e. $\kappa_W = \kappa_Z = \kappa_b = \kappa_\tau = \kappa_t, ... = 1$) and new particles do not contribute to the Higgs boson width.

Data are compatible with SM predictions at 10-15% accuracy. ATLAS: $\kappa_g = 1.04 \pm 0.14$ at 68% C.L. $\kappa_\gamma = 1.20 \pm 0.15$ at 68% C.L. CMS: $\kappa_g \in [0.63, 1.05]$ at 95% C.L. $\kappa_\gamma \in [0.59, 1.30]$ at 95% C.L. No sign of BSM signal in the gg \rightarrow H and H $\rightarrow\gamma\gamma$ loops.

d) Constraints on BSM branching ratios

Invisible Higgs decay

Accessible via H+1-jet (mono-jet), VBF and VH processes.

- $\bigcirc \text{ Limit with ZH(H \rightarrow inv) at 95\% C.L.}$
 - $\bigcirc \text{ATLAS BR}_{inv} < 0.65 \text{ (expected 0.84)}$
 - \bigcirc CMS BR_{inv} < 0.75 (expected 0.91)

Via coupling measurement, parameterize:

$$\Gamma_{\rm H} = \Gamma_{\rm SM} + \Gamma_{\rm BSM}$$
$$BR_{\rm BSM} = \frac{\Gamma_{\rm BSM}}{\Gamma_{\rm SM}}$$

Assume: $\kappa_W = \kappa_b \dots = 1$ and 3 parameter fit (κ_γ , κ_g , BR_{BSM})

ATLAS: $BR_{BSM} < 0.60$ at 95% C.L. (0.67 expected)CMS: $BR_{BSM} < 0.52$ at 95% C.L. (0.56 expected)

No sign of Higgs decay to BSM I stringent limit on Dark Matter

e) Higgs decay width measurements

- 1. Via direct measurements CMS PAS HIG-13-016 CMS H $\rightarrow\gamma\gamma$ mass spectrum $\Gamma_{\rm H} < 6.9$ GeV at 95% C.L.
- 2. Via Higgs coupling or invisible Higgs search BR(inv)<50% limit corresponds to $\Gamma_{\rm H} < 2\Gamma_{\rm H}^{\rm SM}$ (= 8MeV) assuming couplings to SM particles are as in the SM.
- 3. Via Higgs interferometry

LHC Higgs XS WG $\int_{L}^{0} \int_{L}^{10^{3}} \int_{10^{2}}^{10^{3}} \int_{10^{2}}^{10^{3}} \int_{10^{2}}^{10^{2}} \int_$

Destructive interference between Higgs signal and $gg \rightarrow VV$ continuum background.

 $H \rightarrow \gamma \gamma$ (S. Martin, L. Dixon) - mass shift (depends on Higgs p_T) $\Delta M_{\gamma\gamma} = -70$ MeV for SM at NLO. $H \rightarrow WW^*/ZZ^*$ (N. Kauer, G. Passarino) - mass spectrum in high-mass end above $M_{4l} > 2M_{top}$.

Sensitivity on $\Delta\Gamma_{\rm H} \leq O(100 \,\text{MeV})$ is feasible?

Different couplings of Higgs-gauge boson and Higgs-Yukawa couplings, coupling ratios (VV, FV, du, Iq), loop induced couplings, BSM BR have been tested.
 All are consistent with the Standard Model !

Couplings versus Mass - Higgs-gauge boson and Yukawa -

- Electroweak symmetry breaking needs to explain:
 - Non-zero mass of W/Z gage bosons and fermions.
 - Unitarity conservation below 1 TeV.
- Non-linear relation would indicate the Higgs sector is not single doublet.

4. Híggs Boson Quantum Numbers

What are the quantum numbers of observed state X ?
J^{PC}: J=spin, P=parity, C=charge conjugation

Spin0: Standard Model Higgs boson

- The Standard Model Higgs boson is scalar particle (0^+) .
- CP-mixing/violation in spin-0 can exist but small in many BSM models.
- Spin1: Landau-Yang theorem
 - Landau-Yang theorem forbids the direct decay of an on-shell spin-1 particle into a pair of massless particles.
 - Solution Observation of $H \rightarrow \gamma \gamma$ rules out the possibility that the new resonance has spin 1, and fixes C=1 (barring C violating effects in the Higgs sector).
 - This theorem strictly applies to an on-shell resonance (*i.e.* small width hypothesis).
- Spin2: graviton
 - Theoretically difficult. Velo-Zwanziger problem with U(1) gauge field.
 - Who will be responsible for electroweak symmetry breaking?
 - Why haven't we observed analogous KK excitations of SM gauge bosons?

But experimentalists are not biased with theory. Let's try with $H \rightarrow \gamma \gamma$, ZZ^{*} and WW^{*}.

a) Spin/CP study in $H \rightarrow \gamma \gamma$

Decay angle
$$\cos\theta^*$$
 in di-photon (Collins-Soper) rest frame: $\left|\cos\theta^*\right| = \frac{\left|\sinh(\Delta\eta^{\gamma\gamma})\right|}{\sqrt{1+(p_{\rm T}^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_{\rm T}^{\gamma_1}p_{\rm T}^{\gamma_2}}{m_{\gamma\gamma}^2}$

No event yield information (cross section) is used but shape only in these analyses. 15

c) Spin/CP study in $H \rightarrow WW^* \rightarrow lv lv$

Kinematical variables sensitive to J^P: $\Delta \phi_{ll}$, M_{ll} , m_T ...

17

Test statistic:

Spin/CP 0⁺ vs 0⁻

18

Higgs spin/CP: combined results

CERN-PH-EP-2013-102

- Exclude pure J^P=0⁻, 1[±], 2⁺ (minimal coupling) at more than 97.8% C.L.. (but note that LHC has not tested all models!)
- Other production modes in study: VBF (phi difference in tagged jets), WH/ZH (invariant mass distributions are discriminant for J^P=0[±], 2⁺).

Anomalous coupling approach (current LHC analysis method)

Amplitude compatible with Lorentz and gauge invariance. Momentum dependent form-factors. Consistent only at LO.

- **Effective Lagrangian approach** (future plan)
 - General effective Lagrangian compatible with Lorentz and gauge invariance. Consistent beyond LO.
- Given Coupling of a pseudoscalar (0⁻) particle A to VV is loop induced that can be suppressed. Thus study in X→ff (Yukawa sector) will become important.

5. Hígh Lumínosíty LHC (HL-LHC)

Higgs potential - Higgs self-coupling

- One of the core physics programmes at HL-LHC, but very challenging in both experiment and theory.
- Is it feasible to measure Higgs self-coupling at 20-30% level at HL-LHC ?

Now being discussed at ECFA HL-LHC study + LHC Higgs XS WG.

- 1. which channels to explore as benchmark, ex. HH \rightarrow bb $\gamma\gamma$, bb $\tau\tau$ etc.,
- 2. new ideas on analysis methods, ex. interference effect in kinematical variables, boosted Higgs regime, HH+jets, etc.,
- 3. strategy for common (NLO) MC tool developments in various channels in $gg \rightarrow HH/ttHH$, $qq \rightarrow qqHH/WHH/ZHH$, MSSM h/H/A/H[±] pair production.

Summary

Higgs Property Measurements at LHC

Higgs boson mass (M_H) & decay width ($\Gamma_{\rm H}$)

 \hookrightarrow M_H measured at 3 per mille precision. No sign of BSM in Γ_H , BR_{inv}.

- \bigcirc Higgs couplings to gauge bosons (g_V) and fermions (g_F)
 - \hookrightarrow Consistent with the SM prediction, $g_V \propto m_V^2$, $g_F \propto m_f$. Next, study in $d\sigma/dX$.
- Higgs boson quantum numbers J^{PC} and tensor structure \hookrightarrow Evidence for scalar nature of 0^+ . No evidence for CP-mixture.
- \bigcirc Higgs potential Higgs self-coupling λ
 - \hookrightarrow Remains as an important territory to conquer in HL-LHC.
- Beyond the Standard Model Higgs (MSSM, 2HDM, etc.)
 - \hookrightarrow No evidence, but keep looking for BSM Higgs(es) and exotic Higgs decays.
- We have observed the fist elementary particle of scalar Higgs boson.
 - Brout-Englert-Higgs mechanism: what an incredible purely theoretical idea !!!
 - Experimentalists will make every endeavor for BSM physics discovery !!

LHC - hadron collider now enters in precision measurement era !

Backup

LHC Higgs Cross Section Working Group

LHC Higgs XS WG CERN Report Trilogy

Handbook of LHC Higgs Cross Sections:

- 1. Inclusive Observables (CERN 2011-002, 151 pp)
- 2. Differential Distributions (CERN 2012-002, 275 pp)
- 3. Higgs Properties (CERN 2013-004, 392 pp)

Destructive interference in both gg \rightarrow **H (top-bottom) and H** \rightarrow $\gamma\gamma$ (top-W) loops.

27

Note on Coupling versus Mass relation

Recent discussions on quark mass (M. Spira)

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SMInputParameter

1. One can define quark mass for Yukawa coupling,

$$\bar{g}_Q(M_H), \bar{g}_Q(M_Q), g_Q^{\text{pole}}$$

2. Though above are theoretically equivalent, running mass evaluated at Higgs mass scale is better to avoid the offset due to non-universal corrections in quarks and leptons,

$$\Gamma(H \to Q\bar{Q}) = \bar{g}_Q^2(M_H) \frac{3M_H}{16\pi} \left\{ 1 + \frac{17}{3} \frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right\}$$
$$m_b(m_b) = 4.16 \,\text{GeV}, m_b(M_H) = 2.76 \,\text{GeV}$$

- 3. Use pole mass for top quark (172.5GeV).
- 4. Use PDG values for leptons and W/Z boson masses. The universal QED corrections for leptons are small.

