XMASS The Direct Dark Matter detection experiment

Outline

1.INTRODUCTION
2.Results from 1st phase XMASS (100kg fid. [835kg total])
3.Refurbishment of XMASS-I
4.XMASS1.5 (next phase: 1t fid. [5t total])
5.Conclusion

Yoichiro Suzuki

Kamioka Observatory, Institute for Cosmic Ray Research and,

Kavli, Institute for the Physics and Mathematics of the Universe, University of Tokyo

Direct detection of Dark Matter

XMASS

Multi-purpose liq. Xenon detector

- Final Goal: 10 ton fiducial mass, 25 ton total $(2.5m\phi)$
 - pp-solar neutrinos: $v + e \rightarrow v + e$
 - Double beta decay $^{136}Xe \rightarrow ^{136}Ba + 2e^{-1}$
 - Dark Matter: WIMPs, Axions, Axion Like Particles
- Single phase detector (scintillation only)
 - Simple, Scalable, ...
 - BG reduction by self-shielding
 - Challenge
 - Need low radio-active background
- Staging Approach ٠

Y. Suzuki, hep-ph/0008296

XMASS-II Multi-purpose 10 ton /25 ton

- 100 kg fid. mass, [835 kg inner mass (0.8 mφ)]
- 630 hexagonal & 12 round PMTs with 28-39% Q.E.
- Sensitive also to electron/γ events

What we have learnt

- photocathode coverage: > 62% inner surface: 14.7±1.2 pe/keV (largest)
- Threshold achieved: 0.3 keVee w/o reconstruction (lowest), and 5 keVee w/ reconstruction

Unexpected backgrounds

- A fraction of those surface BGs leaks into the fiducial mass region by the vertex reconstruction
- Need to replace all the PMT for the next phase, XMASS1.5

2013/08/14

Whole Volume Analysis with lowest threshold data

- We took data with 4 hits threshold and analyze the events above > 0.3 keVee for entire volume
- Advantage of the high light yields

- Clean up
- Cut: Cherenkov event rejection

(# of hits in 20ns window)/(total # of hits) > 0.6 Scintillation: ~0.5, Cherenkov:0.9~1

6

40K decay in photo cathodes to create Cherenkov in the window of PMT
 2013/08/14Most BG in this energy region
 Y. Suzukh@Windows on the Universe in Quy Nhon, Vietnam

Background level

• Our BG level (whole volume) after removing Cherenkov events is 'low' even with the unexpected surface backgrounds.

- Compare Dark Matter MC to the data
- Obtain the maximum cross section (upper limits) of the spectrum not to exceed the observed data points.
- Current XMASS is close to the allowed regions of DAMA/CoGeNT/ CRESST/CDMSII-Si.

Results on low mass dark matter

We will reduce the backgrounds in very near future 2013/08/14 Y. Suzuki @Windows on the Universe in Quy Nhon, Vietnam

Solar Axions Bremsstrahlung and Compton scattering (g_{aee})

- Production: Various mechanism
 - Bremsstrahlung and Compton scattering (g_{aee}) ← for our study
 - 2. Primakoff effect (g_{ayy})
 - 3. Nuclear de-excitation (⁵⁷Fe) (g_{aN})

- Limits from absolute maximum: g_{aee} = 4.5x10⁻¹¹
- Allowed mass for particular models:
 - < 200 eV for KSVZ; < 2 eV for DFSZ

2013/08/14

Refurbishment of XMASS-I

- Immediate imporovement
- We also understand the backgrounds further
- Establish the methods how to reduce those backgrounds.
- 1) PMT Al-seal (Source of the most BG)
 - Difficult to remove
 - Shield scintillation light originating from the PMT Al ($\alpha,\,\beta)$
 - Installation of Cu ring around the PMT around the PMT Al-seal
 - Place a Cu-plate over the gaps between PMT Rings
 - But cannot stop γ BG

After installation of the plates

Refurbishment

2) Reduce the BG (²¹⁰Pb, ²¹⁰Po) on Cu surface (2nd largest component in the remaining BG)

- Clean up surface ²¹⁰Pb
 - Rn daughters, O(< μm) below the surface
 - Grind and electro-polishing
- Work in the low Rn environment (<10mBq/m³)
- Test for XMASS1.5
- Expect 1/100 reduction of BG
- Refurbish work has already started in July and will be completed in early October
 - Limited modifications: not sufficient to get the satisfactory sensitivity
 - → need XMASS1.5

XMASS1.5

- Next step: XMASS1.5
 - 5 ton total mass and 1 ton fiducial mass. ⇔
 comparable sensitivity to XENON1t
- Improvement (learnt from XMASS-I)
 - Reduce surface backgrounds
 - Follow the low background technology established in the refurbishment of XMASS-I
 - No dirty material (Al, ...)
 - Use new PMTs, not only w/o dirty Al, but..

New PMTs for XMASS1.5

- Convex type round PMTs: Better identification of surface events (BG) by using the adjacent ones
- Sum of the detected photons of 3 PMTs surrounding the vertex of the surface events:

48% detection for this configuration

 At 2.5 keV, if > 10%, then only 10⁻⁵ of surface BG (O(1)) will leak into the fiducial volume

XMASS1.5 \rightarrow 10⁻⁴/kg/d/keV

Sensitivity of XMASS1.5

- Sensitivity
 - Fid volume cut analysis (1 ton, >2keVee)
 - $\sigma_{\rm SI}$ < 10⁻⁴⁶ cm² \Leftrightarrow XENON1t
 - Whole volume analysis (5 ton, >0.3 keVee) [14.73 photo-electrons/keV]
 - σ_{SI} < ~ a few x10⁻⁴² cm² for low mass dark matter
- Time schedule
 - 2014 15: Construction
 - 2016: Start data taking

Summary

- From XMASS-I, we have leant that
 - High light yield (14.7 pe /keVee); Low threshold (0.3 keVee)
 - But surface BGs are most crucial issue for single phase detectors
 - Demonstration of the advantage of the low threshold and e/γ detectability
 - Low Mass WIMP search (PLB 719(2013)78)
 - Solar Axion Search (PLB 724 (2013) 46)
- XMASS1.5
 - New PMTs
 - Suppression of the surface BG into fid. volume: 10⁻⁵
 - Search for $\sigma_{\rm SI} {=} 10^{{\scriptscriptstyle -46}}\,{\rm cm^2}$ region: Highest sensitivity
 - Start data taking in 2016
- Refurbishment of XMASS-I is on going
 - Place covers around PMT-Al-Seal, not complete, γ-exist
 - To demonstrate the handling of BG
 - Data taking in October, 2013.

