Results on QCD jet production at the LHC (incl. Heavy flavours)

R. Seuster (TRIUMF)

On behalf of the ATLAS and CMS collaborations

Recontres du Vietnam August 11th – 17th, 2013 "Windows on the Universe"

Outline

- Introduction
- Jet Reconstruction and Calibration
- Jet Cross Sections
- Determination of α_s
- Colour Coherence
- Heavy Flavours
- Summary and Conclusions

Introduction - QCD

- LHC is a discovery machine (\rightarrow Higgs 1st anniversary)
- Why doing QCD measurements ?
 - dominant process at LHC
 - LHC provides previously inaccessable energy regime
 - provides wealth of new measurements
 - constrain PDFs parton density functions
 - last but not least: main background for many searches
- Why measuring (QCD) Jets ?
 - manifest confinement i.e. no free quarks
 - reflect approximately interactions of partons

Introduction - LHC

- excellent performance of LHC over last years
 → huge datasets to analyse ATLAS 2012: ~21 fb⁻¹ 2011: ~5 fb⁻¹ 2010: ~50 pb⁻¹
- varying levels of pileup during run 1, from ~zero up to almost 40 coll./xing!
- requires new techniques to deal with pileup
 - → in active development
 - → some QCD measurements done with low pileup data from (mostly) 2011 some even from 2010

Jet Reconstruction + calibration

Jet Algorithm: iterative procedure to cluster particles to new pseudo particles based on a measure of distance until a cut-off R is reached now anti- k_{τ} recombination scheme commonly used

both ATLAS and CMS have non-compensating calorimeters for hadrons requires dedicated jet energy calibration (JES)

for 2012 new calibration and new pileup subtraction schemes are being developed

August 11-17, 2013

Inclusive Jet Cross Section at 8 TeV

JES dominating experimental systematic uncertainty

→ good agreement over several orders of magnutide ! differences data – MC mostly smaller than systematic uncertainties NLO PDF sets agree well with data (except ABM11 – not shown here)

August 11-17, 2013

Ratio of Jet Cross Sections at 2.76 TeV and 7 TeV ATLAS arXiv: 1304.4739

correlations reduce systematic uncertainties such that PDF can be constrained $\sqrt{s}=2.76$ TeV, L=0.20pb⁻¹, anti-k_T with R=0.4 and R=0.6

 $x_{T} = 2 p_{T} / \sqrt{s}$

 x_{τ} and p_{τ} have both advantages, p_{τ} lower experimental systematics due to common uncertainty on JES $\rightarrow p_{\tau}$ preferred observable

R. Seuster Recontres du Vietnam 2013

August 11-17, 2013

Gluon contribution to PDF

ATLAS arXiv: 1304.4739

in general well constrained by PDF fits from HERA data gluon momentum distribution below x<0.01 less well known

in this analysis due to large
NP uncertainties, jets below
45 GeV excluded in fits
2.76 TeV and 7 TeV considered
fully correlated in jet calibration

→ Harder gluon spectrum after including ATLAS data As a result, sea quark momentum spectrum softer

Ratio of Jet X Sections – different R

 $R(0.5,0.7) = \sigma(R=0.5) / \sigma(R=0.7)$ ratio of unfolded cross sections

R=0.5 jets show bigger deviations (not shown here) \rightarrow non-perturbative corrections needed to improve description of jets with small radii partonshowers in modern Monte Carlo generators mimick the NP corrections well

August 11-17, 2013

 $N_{_{3/2}}$ has lower sensitivity to variations in scales \rightarrow used to determine α_s shown on next slide

August 11-17, 2013

R. Seuster Recontres du Vietnam 2013

10

 $\alpha_s(M_z) = 0.1148 \pm 0.0014 (\exp) \pm 0.0018 (PDF)^{+0.0050}_{-0.0000} (\text{scale})$

11

August 11-17, 2013

α_{c} measurement from Jet Masses

CMS SMP-12-027

running of alpha_s agrees well with prediction up to Q ~1.4 TeV

initial studies show sensitivity of m_3 to gluon distribution between 0.05<x<0.5 unfolded spectra agree well with theory over

August 11-17, 2013

k_{τ} splitting scales in W->lv

ATLAS Eur. Phys. J. C (2013) 73:2432

 k_{τ} jet algorithm:

$$d_{ij} = \min(p_{T_i}^2, p_{T_j}^2) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta$$
$$d_{iB} = p_{T_i}^2 \qquad \Delta$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

 $\boldsymbol{k}_{\!\scriptscriptstyle T}$ recombination approximates QCD evolution

partial cancelation of systematic uncertainties in ratio of splitting scales

Colour Coherence

CMS PAS-SMP-12-010 $\beta = |atan2(\Delta \Phi_{23}, \Delta \eta_{23})|$ anti-kT with R=0.5 colour coherence suppresses particle emission around pi/2 and enhances emission at 0, pi η $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ CMS Preliminary L = 36 pb⁻¹ CMS Preliminary L = 36 pb⁻¹ $0.8 < h_{2}l < 2.5$ lη_l **< 0.8** 0.08 0.08 1/N dN/dB I/N dN/dB 0.0 0.06 Pvthia6 D6T vthia6 D6T Color Coherence On Color Coherence On Color Coherence Off Color Coherence Off 0.02 0.02 **Unfolded Data Unfolded Data** 1.3 MC/Data MC/Data Color Coherence On olor Coherence On Color Coherence Off olor Coherence Off 0. 0.5 2.5 2.5 0.5 15 1.5 \rightarrow colour coherence in MC improves description, but still does not describe it fully can be used for new tuning of MC to further improve description

August 11-17, 2013

Flavour Composition of Di-Jets

ATLAS Eur. Phys. J. C (2013) 73:2301

classify jets according to initial flavour: light quarks (U) and heavy quarks (C) and (B) 6 combinations for di-jets BB, CC, UU and mixed CU, BU, BC create 2D templates in two kinematic variables for found vertices in jets and fit simultaniously all 6 combinations

good agreement between data and MC prediction for all 6 combinations except BU which is higher for p_{τ} >100GeV than LO and NLO MC predictions

August 11-17, 2013

Jet Shapes in Light & b Quark Jets

well MC description of the measurement

Other, New Results not shown

Jet Substructure

 grooming, trimming, more aimed pileup suppression as well as searches and investigating heavy particles
 ATLAS: arXiv: 1306.4945 (submitted to JHEP)
 CMS: JHEP 05 (2013) 090

- other Vector Boson + Jets
- complete list of (all) publications available at:

ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults#Jet_Physics CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

August 11-17, 2013

Summary and Conclusions

- many interesting new results in QCD
- in general good agreement with theory predictions

 few exceptions e.g. heavy and light flavour QCD production

- running of strong coupling constant confirmed well above 1 TeV scale
- QCD well understood at LHC !