Rare decays of beauty and charm hadrons at LHCb

Justine Serrano on behalf of the LHCb collaboration

Centre de Physique des Particules de Marseille

Windows on the Universe, Quy Nhon, August 2013

Outline

- Rare B leptonic decays
 - BR(B_{s/d} $\rightarrow \mu^+\mu^-)$ new at EPS!
 - BR(B_{s/d} \rightarrow e⁺ μ ⁻) new at LP!
- Rare B semileptonic decays
 - $B_d \rightarrow K^{*0} \mu^+ \mu^-$ standard observables
 - $B_d \rightarrow K^{*0} \mu^+ \mu^-$ new observables
 - New resonance in $B^+ \rightarrow K^+ \mu^+ \mu^-$

new at EPS! new at EPS!

- Rare charm decays
 - BR(D⁰→μ⁺μ⁻) new at LHCP!
 - BR(D⁺→π⁺μ⁺μ⁻)

The indirect search for new physics

- Up to now, no sign of new physics from direct searches... But flavour physics can help !
- Flavour changing neutral currents are forbidden at the tree level in the SM They can only proceed through loop diagrams

 \Rightarrow Suppressed by the GIM mechanism

- NP virtual particles can enter the loop and modify observables as branching ratio, CP asymetry, angular distributions,...
- Complementary to ATLAS/CMS searches, flavour can probe very high scale!

LHCb

Rare decays @ LHCb

Justine Serrano

Data taking conditions

 Running at a constant luminosity of 4.10³² cm⁻² s⁻¹ thanks to the luminosity leveling

This is twice the design luminosity!

Interactions per crossing
 <µ>~1.7
 This is four times more than desired

This is four times more than design!

Recorded integrated luminosity: 1 fb⁻¹ @ 7TeV (2011) 2 fb⁻¹ @ 8TeV (2012)

Rare decays @ LHCb

$B_{s/d} {\rightarrow} \mu^+ \mu^-$

Theoretical status:

- Precise SM prediction:
 - BR(B_s $\rightarrow \mu^{+}\mu^{-}$)= (3.35±0.28) x10⁻⁹
 - BR(B_d $\rightarrow \mu^{+}\mu^{-})= (1.07\pm0.10) \times 10^{-10}$

Updated from A.J.Buras arXiv:1208.0934

• Taking B_s oscillation into account, the measured BR should be compare to: $B(B_s^0 \rightarrow \mu^+\mu^-)_{exp}^{SM} = (3.56 \pm 0.30) \times 10^{-9}$

Experimental status (before EPS 2013):

• First evidence of $B_s \rightarrow \mu^+ \mu^-$ by LHCb, last november:

$$B(B_s^0 \to \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$$

3.5σ!! Phys. Rev. Lett. 110, 021801 (2013)

- Best upper limit for $B_d \rightarrow \mu^+\mu^-$: $B(B^0 \rightarrow \mu^+\mu^-) < 9.4 \times 10^{-10}$ at 95% CL
- CMS and ATLAS are in the game too

Analysis strategy

Selection

- muon-based trigger
- Soft selection
- Similar to control channels
- Blind signal region (M_{Bd}-60MeV, M_{Bs}+60MeV)
- Signal and background discrimination:
 - Invariant mass
 - **boosted decision tree** combining kinematic and geometrical properties
 - Data driven calibration through control channels
- Normalization with channels of known BR: B⁺ \rightarrow J/ΨK⁺ and B_d \rightarrow Kπ
- Background estimation
 - combinatorial from m_{µµ} sidebands
 - detailed study on various exclusive backgrounds
- BR measurement using a maximum likelihood fit in bins of BDT
- Limit measurement using the modified frequentist CLs method in bins of mass and BDT

Justine Serrano

Results: $B_{s/d} \rightarrow \mu^+ \mu^-$

LHCb + CMS

CMS PAS BPH-13-007, LHCb-CONF-2013-012

- CMS also showed un update using the full statistics at EPS
- Combining CMS and LHCb:

$$preliminary = (3.6^{+1.6}_{-1.4}) \times 10^{-10} \quad BR(B^0_S \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

First observation !!

$B_{s/d} \rightarrow e^+ \mu^-$

arXiv:1307.4889

- Lepton flavour violating mode, forbidden in the SM
- Similar analysis strategy as $B_s \rightarrow \mu^+ \mu^-$

	${\rm B^0_s}{ ightarrow}{\rm e^+\mu^-} { m at} ~90\%(95\%) { m ~CL}$	$\mathrm{B^0}{ ightarrow}\mathrm{e^+\mu^-} \ \mathrm{at} \ 90\%(95\%) \ \mathrm{CL}$
Expected (LHCb 1fb ⁻¹)	$1.5\ (1.8)\ 10^{-8}$	$3.8~(4.8)~10^{-9}$
Observed (LHCb $1fb^{-1}$)	$1.1 \ (1.4) \ 10^{-8}$	$2.8 (3.7) 10^{-9}$
Current (CDF $2fb^{-1}$)	$20.0 \ (20.6) \ 10^{-8}$	$64.0\ (79.0)\ 10^{-9}$

New world best limits!

Constraint on Pati-Salam leptoquark :

CDF $m_{LQ}(B_s \to e^+\mu^-) > 47.8(44.9) TeV/c^2 @ 90(95)\%CL,$ $m_{LQ}(B_d \to e^+\mu^-) > 59.3(56.3) TeV/c^2 @ 90(95)\%CL$

LHCb $\begin{array}{l} m_{LQ}(B_s \to e^+\mu^-) > 107(101) \ TeV/c^2 \ @ \ 90(95)\% CL, \\ m_{LQ}(B_d \to e^+\mu^-) > 135(126) \ TeV/c^2 \ @ \ 90(95)\% CL \end{array}$

Rare semileptonic decays

 b →sl⁺l⁻ FCNC processes represent a very rich environment: angular observables, rates, asymmetries sensitive to NP

• A lot of different channels can be studied: $B_d \rightarrow K^{*0}\mu^+\mu^-$, $B_d \rightarrow K^{*0}e^+e^-$, $B^+ \rightarrow K^+\mu^+\mu^-$, $B_s \rightarrow \phi\mu^+\mu^-$, $\Lambda_b \rightarrow \Lambda \mu^+\mu^-$, ...

$$B_d \rightarrow K^{*0} \mu^+ \mu^-$$

• Decay described by 3 angles and di-muon invariant mass squared q²
• Folding the
$$\phi$$
 angle (if $\phi < 0$, $\phi = \phi + \pi$), we can reduce the number of free parameters:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos \theta_\ell d\cos \theta_K d\hat{\phi}} = \frac{9}{16\pi} \begin{bmatrix} F_L \cos^2 \theta_K + \frac{3}{4}(1 - F_L)(1 - \cos^2 \theta_K) - F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) + f_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) + f_L \sin^2 \theta_K (2 \cos^2 \theta_\ell - 1) + f_L \sin^2 \theta_K (2 \cos^2 \theta_\ell - 1) + f_L \sin^2 \theta_K (2 \cos^2 \theta_\ell - 1) + f_L \sin^2 \theta_K (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} + f_R \sin^2 \theta_K (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} + f_R \sin^2 \theta_K (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\hat{\phi} \end{bmatrix}$$

 A_{FB} zero crossing point precisely predicted in SM: $q^2 = 4.36^{+0.33}$ (GeV/c²)²

Rare decays @ LHCb

Justine Serrano

Results

- Analysis based on 1 fb⁻¹, ~900 events
- Observables measured in 6 q² bins

arXiv:1304.6325 Accepted by JHEP

Rare decays @ LHCb

Results

arXiv:1304.6325

Theory from bobeth-Hiller-Van Dyk (2011), consistent with Matias et al (2013)

Good agreement with SM predictions First measurement of zero crossing point:

$$q_0^2 = 4.9 \pm 0.9 \ GeV^2 / c^4$$

New observables

- Observables with limited dependence on form-factors uncertainty have been proposed by several theorists
- Different set of observables give different constraints

 complementarity!
- Use different folding to measure each P'_i

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right. \\ \left. - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_\mathrm{L}) A_\mathrm{T}^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + \sqrt{F_\mathrm{L}(1 - F_\mathrm{L})} P_4' \sin 2\theta_K \sin 2\theta_\ell \cos \phi + \sqrt{F_\mathrm{L}(1 - F_\mathrm{L})} P_5' \sin 2\theta_K \sin \theta_\ell \cos \phi + \left. (1 - F_\mathrm{L}) A_{Re}^\mathrm{T} \sin^2\theta_K \cos \theta_\ell + \sqrt{F_\mathrm{L}(1 - F_\mathrm{L})} P_6' \sin 2\theta_K \sin \theta_\ell \sin \phi + \sqrt{F_\mathrm{L}(1 - F_\mathrm{L})} P_8' \sin 2\theta_K \sin 2\theta_\ell \sin \phi + (S/A)_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right]$$

$$A_{\rm T}^{(2)} = \frac{2S_3}{(1-F_L)} \qquad P_5' = \frac{S_5}{\sqrt{(1-F_L)F_L}} \\ A_{\rm T}^{Re} = \frac{S_6}{(1-F_L)} \qquad P_6' = \frac{S_7}{\sqrt{(1-F_L)F_L}} \\ P_4' = \frac{S_4}{\sqrt{(1-F_L)F_L}} \qquad P_8' = \frac{S_8}{\sqrt{(1-F_L)F_L}}$$

Results for new observables

۔ ۳ LHCb 0.8 **SM Predictions** preliminary 0.6 Data 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 5 10 20 15 0 q^{2} [GeV²/c⁴]

Good agreement with SM predictions from J. Matias et al, arXiv:1303.5794

Results for new observables

New resonance in $B^+ \rightarrow K^+ \mu^+ \mu^-$

Analysis based on 3 fb⁻¹

arXiv:1307.7595

$\psi(4160)$ parameters:

$B[imes 10^{-9}]$	$3.9^{+0.7}_{-0.6}$
Mass $[MeV/c^2]$	4191^{+9}_{-8}
Width $[MeV/c^2]$	65^{+22}_{-16}
Phase [rad]	-1.7 ± 0.3

- Observation of a resonant structure at high q²
- Consistent with Ψ(4160). Confirm BES mass and width.
- Contribute to ~20% of total signal at high q² >> OPE estimate

Rare charm decay: D⁰→µ⁺µ⁻

- SM prediction : 10⁻¹³-10⁻¹¹
- 0.9 fb⁻¹ analysed, using $D^{*+} \rightarrow D^0 (\rightarrow \mu^+ \mu^-) \pi^+_{slow}$
- Yields from 2D fit: $m(D^0)$ vs $\Delta m(D^{*+}-D^0)$

B(D⁰→ $\mu^+\mu^-$)<7.6×10⁻⁹ @ 95% CL (20 times better than previous limit)

Phys. Lett. B725 (2013) 16

Rare decays @ LHCb

Rare charm decay: $D_{(s)}^+ \rightarrow \pi^+ \mu^+ \mu^-$

Rare decays @ LHCb

Justine Serrano

Conclusion

- LHCb has plenty of new results on rare decays!
 - New BR measurement for $B_s \rightarrow \mu^+ \mu^-$ with 4 σ significance
 - New observables measurement in $B_d \rightarrow K^{*0} \mu^+ \mu^-$
 - New resonance found in $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - World best limits on $B_{s/d} \rightarrow e^+\mu^-$, $D^0(\rightarrow \mu^+\mu^-)$, $D_{(s)}^+ \rightarrow \pi^+\mu^+\mu^-$
 - Not covered in this talk : CP asymetry in B⁺ \rightarrow K⁺ $\mu^{+}\mu^{-}$, BR(B_d \rightarrow K^{*0}e⁺e⁻), angular analysis of B_s \rightarrow $\phi\mu^{+}\mu^{-}$, BR($\Lambda_{b} \rightarrow \Lambda \mu^{+}\mu^{-}$), asymetries in B_d \rightarrow K $\pi\pi\gamma$

- Overall good agreement with SM, except for a local discrepancy in the low q² region for P₅' in the B_d→K^{*0}µ⁺µ⁻ decay
- Most of analyses done with 1 fb⁻¹, 2 other fb⁻¹ to be analysed!

Spot the differences

- Geometrical variables: Impact Parameters, Distance of Closest Approach, isolation
- Kinematic variables: Transverse momentum

Fit projections

$B^0 \rightarrow \mu^+ \mu^-$ upper limit

- Use CLs method: evaluate compatibility with bkg only (CL_b) and signal+bkg (CL_{s+b}) hypothesis
- The 95%CL upper limit is defined at $CL_s = CL_{s+b}/CL_b = 0.05$

Rare decays @ LHCb

Fit without Bs signal

$D_{(s)}^+ \rightarrow \pi^+ \mu^+ \mu^-$

Table 1: Signal yields for the $D^+_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$ fits. The ϕ region yields differ due to the different trigger conditions.

Trigger conditions	Bin description	$m(\mu^+\mu^-)$ range [MeV/ c^2]	D^+ yield	D_s^+ yield
	low- $m(\mu^+\mu^-)$	250 - 525	-3 ± 11	1 ± 6
Triggers without	η	525 - 565	29 ± 7	22 ± 5
$m(\mu^+\mu^-) > 1.0 \text{ GeV}/c^2$	$ ho/\omega$	565 - 850	96 ± 15	87 ± 12
	ϕ	850 - 1250	2745 ± 67	3855 ± 86
All triggers	ϕ	850 - 1250	3683 ± 90	4857 ± 90
	high- $m(\mu^+\mu^-)$	1250 - 2000	16 ± 16	-17 ± 16

$$\begin{split} \mathcal{B}(D^+ &\to \pi^+ \mu^+ \mu^-) < 7.3\,(8.3) \times 10^{-8}, \\ \mathcal{B}(D^+_s &\to \pi^+ \mu^+ \mu^-) < 4.1\,(4.8) \times 10^{-7}, \\ \mathcal{B}(D^+ &\to \pi^- \mu^+ \mu^+) < 2.2\,(2.5) \times 10^{-8}, \\ \mathcal{B}(D^+_s &\to \pi^- \mu^+ \mu^+) < 1.2\,(1.4) \times 10^{-7}. \end{split}$$