Latest results from the NA48 and NA62 experiments at CERN

Antonino Sergi

University of Birmingham, United Kingdom

Windows on the Universe 2013 Rencontres du Vietnam, Quy Nhon, Vietnam

K_{13} Form Factors

- $M = \frac{G_F}{2} |V_{us}| (f_+(t)(P_K + P_\pi)^\mu \overline{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \overline{u}_l (1 + \gamma_5) u_\nu),$ $t = a^2$
- scalar FF $f_0(t)$ as linear combination of vector FF: $f_0(t) = f_+(t) + \frac{t}{m_{ee}^2 - m^2} f_-(t)$
- $f_+(0)$ not measurable but $\overline{f}_+(t) = \frac{f_+(t)}{f_+(0)}$, $\overline{f}_0(t) = \frac{f_0(t)}{f_+(0)}$ are accessible

K_{l3} Form Factors

K_{13} Form Factors

- $M = \frac{G_F}{2} |V_{us}| (f_+(t)(P_K + P_\pi)^\mu \overline{u}_l \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) m_l \overline{u}_l (1 + \gamma_5) u_\nu),$ $t = a^2$
- scalar FF $f_0(t)$ as linear combination of vector FF: $f_0(t) = f_+(t) + \frac{t}{m^2 - m^2} f_-(t)$
- $f_+(0)$ not measurable but $\overline{f}_+(t) = \frac{f_+(t)}{f_+(0)}$, $\overline{f}_0(t) = \frac{f_0(t)}{f_+(0)}$ are accessible

Parametrizations:

Pole: assume the exchange of a vector(1⁻) or scalar (0⁺) resonances (m_{V,S}) $\overline{f}_{+,0}(t) = \frac{m_{V,S}^2}{m_{V,S}^2 - t}$

• Linear and quadratic (no physical meaning): $\overline{f}_{+,0}(t) = 1 + \lambda_{+,0} \frac{t}{m^2}$ $\overline{f}_{+,0}(t) = 1 + \lambda'_{+,0} \frac{t}{m^2} + \lambda''_{+,0} \left(\frac{t}{m^2}\right)^2$

ChPT Leptons FCNC

Radiative

Results from $K \to \pi^0 e \nu_e, K \to \pi^0 \mu \nu_\mu$

NA48/2 Preliminary

Quadratic ($\times 10^{-3}$)	λ'_+	$\lambda_{+}^{\prime\prime}$	λ_0'
$K \rightarrow \pi^0 \mu \nu_\mu$	$26.3 \pm 3.0_{stat} \pm 2.2_{syst}$	$1.2 \pm 1.1_{stat} \pm 1.1_{syst}$	$15.7 \pm 1.4_{stat} \pm 1.0_{syst}$
$K \rightarrow \pi^0 e \nu_e$	$27.2 \pm 0.7_{stat} \pm 1.1_{syst}$	$0.7 \pm 0.3_{stat} \pm 0.4_{syst}$	_
Pole (MeV $/c^2$)	m_V		m_S
Pole (MeV/ c^2) $K \to \pi^0 \mu \nu_\mu$	$\frac{m_V}{873 \pm 8_{stat} \pm 9_{syst}}$		$\frac{m_S}{1183 \pm 31_{stat} \pm 16_{syst}}$

Antonino Sergi Latest results from NA48 and NA62

ChPT Leptons FCNC

Radiative

Combined results from $K \to \pi^0 e \nu_e$, $K \to \pi^0 \mu \nu_\mu$

Quadratic ($ imes 10^{-3}$)	$ \lambda'_+$	$\lambda_{+}^{\prime\prime}$	λ_0'
	26.91 ± 1.11	0.81 ± 0.46	16.23 ± 0.95
Pole (MeV $/c^2$)	m_V		m_S
	877 ± 6		1176 ± 31

 Results for *K*_{e3} and *K*_{μ3} from NA48/2 in good agreement

 High precision preliminary results, competitive with other measurements. Smallest error in the combined result.

•
$$K \to \pi^+ \pi^- e \nu_e$$
, called $K_{e4}(+-)$

•
$$K \to \pi^0 \pi^0 e \nu_e$$
, called $K_{e4}(00)$

Five kinematic variables (Cabibbo-Maksymowicz 1965): $s_{\pi} = M_{\pi\pi}^2$ $s_e = M_{e\nu}^2$ $\cos\theta_{\pi}$ $\cos\theta_e$ ϕ

Radiative

K_{e4} Form Factors

Partial Wave expansion, limited to S and P waves [Pais-Treiman (1968) + Watson theorem (T invariance)]

Partial Wave expansion:

• 2 Axial Form Factors (F and G):

•
$$F = F_s e^{i\delta_s} + F_p e^{i\delta_p} cos\theta_{\pi}$$

• $G = G_p e^{i\delta_p}$

- 1 Vector Form Factors (H):
 - $H = H_p e^{i\delta_p}$

The fit parameters (real) are:

• (+-) F_s , F_p , G_p , H_p , $\delta = \delta_s - \delta_p$ • (+-) F_s only (no P-wave) q^2 dependence can be studied from FF fitted in q^2 bins [J.Phys. G25, (1999) 1607]

$$F_s^2 = f_s^2 \left[1 + \frac{f_s'}{f_s} q^2 + \frac{f_s''}{f_s} q^4 + \frac{f_e'}{f_s} \frac{M_{e\nu}^2}{4m_{\pi}^2} \right]^2$$

$$\frac{G_p}{f_s} = \frac{g_p}{f_s} + \frac{g_p'}{f_s}q^2$$
, $F_p = f_p$, $H_p = h_p$

$$q^2 = \left[\frac{M_{\pi\pi}^2}{4m_{\pi}^2} - 1\right]$$

ChPT Leptons FCNC Rad

Radiative

$K_{e4}(+-)$ relative Form Factors: fit results (NA48/2)

NA48/2 total statistics (2003 + 2004)

	value	stat	syst
$\frac{f'_s}{f_s}$	0.152	± 0.007	± 0.005
$\frac{f_s''}{f_s}$	-0.073	± 0.007	± 0.006
$\frac{f'_e}{f_s}$	0.068	± 0.006	± 0.007
$\frac{f_p}{f_s}$	-0.048	± 0.003	± 0.004
$\frac{g_p}{f_s}$	0.868	± 0.010	± 0.010
$\frac{g'_p}{f_s}$	0.089	± 0.017	± 0.013
$\frac{h_p}{f_s}$	-0.398	± 0.015	± 0.008

Published in Eur. Phys J. C70 (2010) 635

ChPT Leptons FCNC

$K_{e4}(+-)$ branching fraction (NA48/2)

- Use $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ decays as normalization
- number of signal (1.11×10^6) , background (0.95% of K_{e4}) and normalization (1.9×10^9) events
- signal and normalization acceptance (18.19% and 23.97%) and trigger efficiency (98.5% and 97.7%)

•
$$BR(K^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = (5.59 \pm 0.04)\%$$

Relative Systematic Uncertainty	(%)
Acceptance, beam geom.	0.18
Muon vetoing	0.16
Accidental activity	0.21
Particle ID	0.09
Background	0.07
Radiative effects	0.08
Trigger efficiency	0.11
Simulation statistics	0.05
Total systematics	0.37
External error $[BR(K_{3\pi})]$	0.72

PDG 2012: $(4.09 \pm 0.10) \times 10^{-5}$

 K^- : first measurement

Published in Physics Letters B 715 (2012) 105 ChPT Leptons FCNC

Radiative

$K_{e4}(+-)$ absolute Form Factors (NA48/2)

Over	Overall form factor normalization: $BR[K_{e4}^{\pm}(+-)]$							
f_s	=	5.705	±	0.003_{stat}	±	0.017_{syst}	\pm	0.031_{ext}
	=	5.705	\pm	0.035_{norm}		-		
f'_s	=	0.867	±	0.040_{stat}	±	0.029_{syst}	\pm	0.005_{norm}
f_s''	=	-0.416	\pm	0.040_{stat}	\pm	0.034_{syst}	\pm	0.003_{norm}
f'_e	=	0.388	\pm	0.034_{stat}	\pm	0.040_{syst}	\pm	0.002_{norm}
f_p	=	-0.274	±	0.017_{stat}	±	0.023_{syst}	±	0.002_{norm}
q_n	=	4.952	\pm	0.057_{stat}	\pm	0.057_{sust}	\pm	0.031_{norm}
g'_p	=	0.508	\pm	0.097_{stat}	±	0.074_{syst}	\pm	0.003_{norm}
$\frac{h_p}{D}$	=	-2.271	±	0.086 _{stat}	±	0.046_{syst}	±	0.014_{norm}
Publ	isned	i in Phys	ICS L	etters B /15) (20	12) 105		

ChPT Leptons FCNC Ra

Radiative

$K_{e4}(00)$ branching fraction (NA48/2)

- Use $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$ decays as normalization
- number of signal (6.6×10^4) , background (1% of K_{e4}) and normalization (94×10^6) events
- signal and normalization acceptance (1.92% and 4.02%) and trigger efficiency (96.1% and 97.4%)

•
$$BR(K^{\pm} \to \pi^{\pm}\pi^{0}\pi^{0}) = (1.761 \pm 0.022)\%$$

$$BR(K_{e4}) \times 10^5$$

Relative Uncertainty	(%)
Acceptance stability cuts	0.15
Form factor uncertainty	0.13
Background evaluation	0.02
Accidental activity	0.02
Trigger cut	0.08
Particle ID	0.25
Radiative events modeling	0.17
Simulation statistics	0.09
Trigger efficiency	0.03
Total systematics	0.38
External error $[BR(K_{3\pi})]$	1.25
Statistical error	0.39

PDG 2012: $(2.2 \pm 0.4) \times 10^{-5}$

Preliminary result Analysis in progress

 $BR[K_{e4}^{\pm}(00)] = (2.585 \pm 0.010_{stat} \pm 0.010_{syst} \pm 0.032_{ext}) \times 10^{-5}$

ChPT Leptons FCNC

$K_{e4}(+-)$ decay and $\pi\pi$ scattering lengths (NA48/2)

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT [NPB 603 (2001) 125, PRL 86 (2001) 5008] Two statistically independent measurements by NA48/2:

- from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in K_{e4} decay [Eur.Phys.J. C70 (2010) 635]
- from the cusp in $M_{\pi0\pi0}$ in $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ decay [Eur.Phys.J. C64 (2009) 589]
- Different systematics: eletron misID and background vs. calorimeter and trigger
- Different theoretical inputs: Roy equations and isospin breaking correction vs. rescattering in final state and ChPT expansion
- Large overlap in the a_0, a_2 plane
- Impressive agreement with ChPT

$K^{\pm} ightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$ (NA48/2 analysis in progress)

- Mainly from $K^\pm o \pi^\pm \pi^0 \gamma^* o \pi^\pm \pi^0 e^+ e^-$ [EPJC 72, (2012) 1872]
- DE and INT depend on XE and XM form factors
- Short distance contributions, sensitive to New physics
- First observation

NA48/2 (2003+2004 data):

- ≈ 4500 events in signal region
- $K^{\pm} \to \pi^{\pm} \pi^0 \pi_D^0$ $(\pi_D^0 \to e^+ e^- \gamma_{LOST})$
- $K^{\pm} \to \pi^{\pm} \pi^0_D$ $(\pi^0_D \to e^+ e^- \gamma) + \gamma_{ACC}$

 $K^{\pm} \to \pi^{\pm} \gamma \gamma$

• BR(z), $z = \frac{m_{\gamma\gamma}^2}{m_{zc}^2}$, depends on a single unknown O(1) parameter \hat{c}

• BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079]

 $K^{\pm} \to \pi^{\pm} \gamma \gamma$

• BR(z), $z = \frac{m_{\gamma\gamma}^2}{m_{\gamma\gamma}^2}$, depends on a single unknown O(1) parameter \hat{c}

• BNL E787: 31 candidates, $BR = (1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079] NA62 2007 NA48/2 2004

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

$K \to e \nu_e \gamma \text{ SD} +$

Radiative

$K \to e \nu_e \gamma \text{ SD} +$

•
$$\frac{d^2\Gamma_{SD}}{dxdy} = \frac{m_K^5 \alpha G_F^2 |V_{US}|^2}{64\pi^2} \left[(F_V + F_A)^2 f_{SD+}(x, y) + (F_V - F_A)^2 f_{SD-}(x, y) \right]^2 \frac{2E_{\gamma}^*}{2E_{\gamma}^*} \frac{2E_{\gamma}^*}{2E_{\gamma}} \frac{2E_{\gamma}^*}{2E_{\gamma}^*} \frac{2E_{\gamma}$$

•
$$f_{SD+}, f_{SD-}$$
 known kinematics, $x = \frac{2D\gamma}{m_K}, y = \frac{2D_e}{m_K}$

۲ KLOE 2009: 4% accuracy, compatible with $O(p^4)$ Form Factor (constant) [Eur. Phys. J. C64 (2009) 627]

Radiative

$K \to e \nu_e \gamma \text{ SD} +$

- NA62 preliminary
- ≈ 10000 event candidates

R_K - LFV test

[PRL 99 (2007), 231801]

R_K - LFV test

- $R_K = \frac{\Gamma(K \to e\nu_e)}{\Gamma(K \to \mu\nu_{\mu})}$
- $BR(K \to e\nu) \approx O(10^{-5})$ $BR(K \to \mu\nu) \approx 63\%$
- In the SM:
 - $R_K = (2.477 \pm 0.001)10^{-5}$
 - Hadronic uncertainties cancel in the ratio
 - Helicity suppression $\approx 10^{-5}$
 - Radiative correction (few %) due to $K \to e \nu_e \gamma (IB)$, by definition included into R_K

[PRL 99 (2007), 231801]

R_K - LFV test

- $R_K = \frac{\Gamma(K \to e\nu_e)}{\Gamma(K \to \mu\nu_\mu)}$
- $BR(K \to e\nu) \approx O(10^{-5})$ $BR(K \to \mu\nu) \approx 63\%$
- In the SM:
 - $R_K = (2.477 \pm 0.001) 10^{-5}$
 - Hadronic uncertainties cancel in the ratio
 - Helicity suppression $\approx 10^{-5}$
 - Radiative correction (few %) due to $K \to e \nu_e \gamma(IB), \, {\rm by \ definition \ included \ into \ } R_K$

[PRL 99 (2007), 231801]

- Experimentally:
 - $R_K = (2.45 \pm 0.11) 10^{-5}$ (PDG 2008, '70s measurements) $\delta R_K/R_K \approx 4.5\%$
 - $R_K = (2.493 \pm 0.031)10^{-5}$ (KLOE [Eur.Phys.J.C64 (2009) 627]) $\delta R_K/R_K \approx 1.3\%$
 - It's worth to improve it because of its small and well predicted value

Leptons FCNC ChPT

LFV

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV}/c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ and } \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

Leptons FCNC ChPT

LFV

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4} 10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV}/c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ and } \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

ChPT Leptons FCNC LFV

R_K in case of New Physics (MSSM)

- Expected effects within $\delta R_K/R_K \approx 10^{-4}-10^{-2}$
- A specific case:

$$\begin{split} R_K^{MSSM} &= R_K^{SM} \left[1 + \left(\frac{m_K}{m_H} \right)^4 \left(\frac{m_\tau}{m_e} \right)^2 |\Delta_{13}|^2 \tan^6 \beta \right] \\ \text{with } m_H &= 500 \text{GeV} / c^2, |\Delta_{13}| = 5 \times 10^{-4} \text{ and } \tan \beta = 40 \\ R_K^{MSSM} &= R_K^{SM} (1 + 0.013) \text{ [PRD 74 (2006) 011701, JHEP 0811 (2008) 042]} \end{split}$$

 π and B have the same effect, but:

- R_π is suppressed by $(m_\pi/m_K)^4 \approx 10^{-3}$
- $B \to e\nu_e$ is out of reach and $\frac{B \to \mu\nu_\mu}{B \to \tau\nu_\tau}$ foresees $\approx 50\%$ enhancement

Final result

U	Incerta	inties

Source	$\delta R_K imes 10^5$
Statistical	0.007
$K \rightarrow \mu \nu_{\mu}$	0.004
$K \to e \nu_e \gamma \ (SD^+)$	0.002
$K \to \pi^0 e \nu_e$, $K \to \pi \pi^0$	0.003
Beam halo	0.002
Matter composition	0.003
Acceptance	0.002
Positron ID	0.001
DCH alignmnent	0.001
1-track trigger	0.001
Total	0.010

Precision and accuracy

145,958 K_{e2} candidates Positron ID efficiency: $(99.28 \pm 0.05)\%$ $B/(S + B) = (10.95 \pm 0.27)\%$

Fit over 40 measurements 4 data samples 10 momentum bins) including correlations: $\chi^2/ndf = 47/39$

Result

$$\begin{split} R_K = (2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5} \\ \text{[Phys.Lett. B719 (2013) 326-336]} \end{split}$$

World Average

u.c.

w

from theory

 $\pm 0.06)$

$K \to \pi \nu \overline{\nu}$

- FCNC process forbidden at tree-level
- Very clean theoretical prediction: hadronic matrix element extracted from $BR(K \to \pi e \nu)$

from CKM

 ± 0.39

Golden modes:

 $\begin{array}{c} & BR_{SM} \\ K_L \to \pi^0 \nu \overline{\nu} & (2.43) \\ K^+ \to \pi^+ \nu \overline{\nu} & (7.81) \end{array}$

- Current existing measurement based on 7 events (E787/949): $(1.73^{+1.15}_{-1.05})10^{-10}$
- Lead to measurement of $V_{td} \approx 7\%$
- New Physics scenario \rightarrow

 10^{-11}

Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^{\pm}	Project X 8 GeV	2 ± 10^{14}	250	2018 + 5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018 + 5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016+2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018 + 5	1500

Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^{\pm}	Project X 8 GeV	2 ± 10^{14}	250	2018+5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018+5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016+2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018+5	1500

Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^\pm	Project X 8 GeV	2 ± 10^{14}	250	2018+5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018+5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016+2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018+5	1500

Golden

Expt	Primary beam	Intensity	SM	Start date	Total
		(ppp)	evts/yr	+ run yrs	SM evts
NA62	SPS 450 GeV	3 ± 10^{12}	55	2014+2	110
FNAL K^{\pm}	Project X 8 GeV	2 ± 10^{14}	250	2018+5	1250
ORKA	Tevatron up ${<}150~{ m GeV}$	5 ± 10^{13}	120	2018+5	600
E14(KoTO)	JPARC-I 30 GeV	2 ± 10^{14}	1-2	2013+3	3-7
E14	JPARC-II 30 GeV	3 ± 10^{14}	30	2020+3?	100
FNAL KL	Booster 8 GeV	2 ± 10^{13}	30	2016+2	60
FNAL KL	Project X 8 GeV	2 ± 10^{14}	300	2018 + 5	1500

 $\begin{array}{c} \mbox{ChPT Leptons FCNC} & \mbox{Golden} \end{array} \\ \mbox{Measurement of } BR(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \mbox{ at NA62} \end{array}$

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

 $\begin{array}{c} \hline \mbox{ChPT Leptons FCNC} & \mbox{Golden} \\ \hline \mbox{Measurement of } BR(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \mbox{ at NA62} \\ \hline \end{array}$

Measurement at 10% (pprox SM prediction accuracy), 100 SM events

92% of K decays

- 2 signal regions
- Minimize multiple scattering

Missing mass K^+ $m_{miss}^2 = (P_{\nu} - P_{\pi})^2$

ChPT Leptons FCNC Golden Measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at NA62

Measurement at 10% (\approx SM prediction accuracy), 100 SM events

h 아들[#] 0.2 문 $K^* \rightarrow \pi^* \pi^0(\gamma)$ -L 20.18 1610 0.14 K^{*}→µ^{*}v_−(γ) 0.12 0.1 0.08 Region I 0.06¹ Region II 0.04 K*->#"VV (x10" 0.02 0 0.1 0.12 m²_{mias} [GeV²/c⁴] -0.04 -0.02 0.02 0.04

Separated by kinematic cuts

92% of K decays

- 2 signal regions
- Minimize multiple scattering

Not separated by kinematic cuts

ChPT Leptons FCNC

Golden

NA62: beam and experiment layout

State of the art detectors for new precision frontier down to $10^{-12}\,$

- SPS primary protons @ 400 GeV/c
- 75 GeV/c (△P/P ≈ 1%)
- Area @ beam tracker 16 cm²
- Kaon decays/year 4.8×10^{12}

- Unseparated secondary charged beam
- $p/\pi/K$ (positron free, $K \approx 6\%$, $p \approx 23\%$)
- Integrated average rate @ beam tracker 750 MHz

Technical run in 2012 and physics data taking in 2014-2016

Golden

NA62 technical run 2012

- Partial set-up:
 - KTAG (50% PMs), 1 straw plane (64 channels readout), CHOD, LKr (30% readout), MUV2, MUV3
- Exploit the timing and spatial correlations between the subdetectors to define a Kaon candidate, pion candidate and a muon candidate

 This analysis will be used in the final analysis to monitor the tails of the reconstructed with the tracking system

Golden

Summary

- Kaon physics continues to be a good tool for investigation in the flavour sector
- Chiral Perturbation Theory and experimental determination of form factors provide a constantly improving tool for future precision measurements
- All measurements are currently in agreement with the SM
- A new generation of experiments is starting to explore ultra rare decays, opening a new chapter of tests for the SM and precision measurements previously not accessible:
 - KoTO has started physics runs this year
 - NA62 is in construction, had a technical run with a partial set-up last year and will start taking data in next year
 - these detectors will be able to improve current measurements