Accelerator-Based Neutrino Oscillation Experiments

Kate Scholberg, Duke University Windows on the Universe, ICISE, August 2013

The three-flavor paradigm

Where are we now?

Results from accelerator-based experiments Where do we still need to go (and why)?

Remaining 3-flavor parameters

Mass hierarchy strategies CP δ strategies

Hunting down anomalies...

Overall summary

We now have clean flavor-transition signals in two 2-flavor sectors

We now have clean flavor-transition signals in two 2-flavor sectors

We now have clean flavor-transition signals in two 2-flavor sectors

And now more information from beams and burns!

And now more information from beams and burns!

Taming the source to confirm & study oscillations with long-baseline beam experiments

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1}{2}\right)$$

$$\left(\frac{1.27\Delta m^2 L}{E}\right)$$

$E_v \sim GeV$, L~ 100's of km for same L/E

Compare flux, flavor and energy spectrum at near and far detectors

> Design your beam at given baseline to cover oscillation peaks

Oscillation probability at 250 km

How To Make Tame Neutrinos

KEK to Kamioka

250 km, 5 kW

K2K

Past

MINOS(+) FNAL to Soudan 734 km, 400 kW

CNGS CERN to LNGS 730 km, 400 kW

Future

NOvA FNAL to Ash River 810 km, 700 kW

T2K J-PARC to Kamioka 295 km, 750 kW

K2K **KEK to Kamioka** 250 km, 5 kW

CNGS CERN to LNGS 730 km, 400 kW

Kamiokande 295km

T2K

JAERI (Tokai)

421.11 mi / 675.8 km acm

J-PARC to Kamioka

295 km, 750 kW

Future

LBNE **FNAL to Homestake** 1300 km, 700 kW

T2HK **J-PARC** to Kamioka 295 km, 700 kW

K2K **KEK to Kamioka** 250 km, 5 kW

CNGS CERN to LNGS 730 km, 400 kW

amiokande 295km

T2K

JAERI (Tokai)

421.01 mi / 675.8 km acm

J-PARC to Kamioka

295 km, 750 kW

T2HK

J-PARC to Kamioka

295 km, 700 kW (→...)

(→Project X)

And new ν_{μ} disappearance results from T2K

Is the disappearance $\nu_{\mu} \not \rightarrow \nu_{\tau}$?

Hard to see τ's explicitly: require >3.5 GeV, multiple decay modes

Hadrons

OPERA @ CNGS

lead/emulsion sandwich + active scint. strip planes + magnetic spectrometer, ~17 GeV beam

NEW 2 τ candidates, expect 0.18 \pm 0.02 bg (2.4 σ)

arXiv:1308.2553

Super-K atmospheric ν 's

The "last" mixing angle θ_{13} : 'the twist in the middle'

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric solar

Strategies for going after θ_{13}

Beams

Oscillation probability at 295 km

Look for appearance of ~GeV v_e in v_μ beam on ~300 km distance scale

K2K, MINOS, T2K, NOvA

Reactors

Look for disappearance of ~few MeV \bar{v}_e on ~km distance scale

CHOOZ, Double Chooz, Daya Bay, RENO

The long-baseline beam approach:

θ_{13} signature: look for small v_e appearance in a v_{μ} beam

for $\Delta m_{23}^2 >> \Delta m_{12}^2$ and $E_{v} \sim L\Delta m_{23}^2$ (in vacuum), $\delta=0$

Hard to measure... known from the CHOOZ reactor experiment that it's a *small* modulation! Need good statistics, clean sample

Excess of v_e -like events seen in T2K, consistent with non-zero θ_{13}

28 v_e candidate e-like rings seen, 4.64 ± 0.52 bg expected **Reconstructed events**

Reconstructed v energy (MeV)

T2K allowed region in $sin^2 2\theta_{13}$ and CP δ

Best fit w/ 68% C.L. error @ $\delta_{CP}=0$

normal hierarchy

 $\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$

inverted hierarchy:

 $\sin^2 2\theta_{13} = 0.182^{+0.046}_{-0.040}$

Assuming $|\Delta m_{32}^2|=2.4\times 10^{-3} \text{ eV}^2$ sin²2 θ_{23} =1.0

A slide from December 2011:

We're closing in on the answer...

We now know that θ_{13} is large!

The three-flavor picture fits well

Global three-flavor fits to all data

	Free Fluxes -		
	bfp $\pm 1\sigma$	3σ range	<u>3σ knowledge</u>
$\sin^2 heta_{12}$	$0.302\substack{+0.013\\-0.012}$	$0.267 \rightarrow 0.344$	
$\theta_{12}/^{\circ}$	$33.36\substack{+0.81 \\ -0.78}$	$31.09 \rightarrow 35.89$	~14%
$\sin^2 \theta_{23}$	$0.413^{+0.037}_{-0.025} \oplus 0.594^{+0.021}_{-0.022}$	0.342 ightarrow 0.667	~170/
$ heta_{23}/^{\circ}$	$40.0^{+2.1}_{-1.5} \oplus 50.4^{+1.3}_{-1.3}$	$35.8 \rightarrow 54.8$	~4270
$\sin^2 \theta_{13}$	$0.0227\substack{+0.0023\\-0.0024}$	$0.0156 \rightarrow 0.0299$	~? 70/
$\theta_{13}/^{\circ}$	$8.66\substack{+0.44\\-0.46}$	$7.19 \rightarrow 9.96$	~32%
$\delta_{ m CP}/^{\circ}$	300^{+66}_{-138}	$0 \rightarrow 360$	∼no info
$\left \begin{array}{c} \Delta m^2_{21} \ 10^{-5} \ { m eV}^2 \end{array} ight $	$7.50\substack{+0.18 \\ -0.19}$	7.00 ightarrow 8.09	~14%
$\left \begin{array}{c} \Delta m_{31}^2 \\ \overline{10^{-3} \ \mathrm{eV}^2} \ \mathrm{(N)} \end{array} \right $	$+2.473\substack{+0.070\\-0.067}$	$+2.276 \rightarrow +2.695$	~17%
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} (\text{I})$	$-2.427\substack{+0.042\\-0.065}$	-2.649 ightarrow -2.242	

M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz, 10.1007/JHEP12(2012)123

What do we *not* know about the three-flavor paradigm?

	Free Fluxes $+$ RSBL			
	bfp $\pm 1\sigma$	3σ range		
$\sin^2 heta_{12}$	$0.302\substack{+0.013\\-0.012}$	$0.267 \rightarrow 0.344$		
$ heta_{12}/^{\circ}$	$33.36_{-0.78}^{+0.81}$	$31.09 \rightarrow 35.89$		non-negligibly
$\sin^2 heta_{23}$	$0.413^{+0.037}_{-0.025} \oplus 0.594^{+0.021}_{-0.022}$	0.342 ightarrow 0.667		greater or smaller than 45 deg?
$\theta_{23}/^{\circ}$	$40.0^{+2.1}_{-1.5} \oplus 50.4^{+1.3}_{-1.3}$	$35.8 \rightarrow 54.8$		
$\sin^2 heta_{13}$	$0.0227\substack{+0.0023\\-0.0024}$	$0.0156 \rightarrow 0.0299$		
$ heta_{13}/^{\circ}$	$8.66\substack{+0.44\\-0.46}$	$7.19 \rightarrow 9.96$		
$\delta_{ m CP}/^{\circ}$	300^{+66}_{-138}	0 ightarrow 360		unknown
$rac{\Delta m^2_{21}}{10^{-5}~{ m eV}^2}$	$7.50\substack{+0.18 \\ -0.19}$	7.00 ightarrow 8.09	_	
$\frac{\Delta m_{31}^2}{10^{-3}~{\rm eV}^2}({\rm N})$	$+2.473^{+0.070}_{-0.067}$	$+2.276 \rightarrow +2.695$		sign of ∆m ² unknown
$\frac{\Delta m_{32}^2}{10^{-3}~{\rm eV}^2}({\rm I})$	$-2.427\substack{+0.042\\-0.065}$	$-2.649 \rightarrow -2.242$		(ordering of masses)

Why do we care about these parameters? Is it just a checklist? What do these parameters tell us?

Non-zero CP violation, could, in principle, inform us on leptogenesis in the context of see-saw neutrino mass models (or maybe not...)

The God Particle

The God Particle

The Devil Phase?

But what it's really about is testing the paradigm...

We need not only to fill in the missing parameters, but make precision measurements of *all* the parameters

Next on the list to go after experimentally: mass hierarchy

(sign of Δm^2_{32})

There are many ways to measure the mass hierarchy

They are all challenging...

Four of the possible ways to get MH

Long-baseline beams

Atmospheric neutrinos

Reactors

Supernovae

Long-baseline beams

Other methods (PINGU, JUNO, supernova, cosmology...) are very promising, but the long-baseline method is the only one that's *guaranteed* with sufficient exposure at long baseline
Determining the MH with long-baseline beams

The basic strategy

Measure transition probabilities for $u_{\mu} \rightarrow \nu_{e} \quad \text{and} \quad \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ through matter

$$P_{\nu_e \nu_\mu (\bar{\nu}_e \bar{\nu}_\mu)} = s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{13}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right) + c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) + \tilde{J} \frac{\Delta_{12}}{A} \frac{\Delta_{13}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\pm \delta - \frac{\Delta_{13}L}{2}\right)$$

A. Cervera et al., Nucl. Phys. B 579 (2000) $\tilde{J} \equiv c_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13}$ $\theta_{13}, \Delta_{12}L, \Delta_{12}/\Delta_{13}$ are small

 $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2}{2E_{\nu}}, \ \tilde{B}_{\mp} \equiv |A \mp \Delta_{13}|, \ A = \sqrt{2}G_F N_e$

Different probabilities as a function of L& E for neutrinos and antineutrinos, depending on:

- CP δ (more later on that)
- matter density (Earth has electrons, not positrons) -

The baseline matters:

NOvA North Dako 14 kt scintillator 700 kW off-axis FNAL beam 810 km baseline ead, SD operations start this year outh Dakota lowa Nebraska Long-Baseline Neutrino Experiment 34 kton LArTPC in SD @ 4850 ft 1300 km baseline New 700 kW beam

North Dako North Dako 14 kt scintillator 700 kW off-axis FNAL beam 810 km baseline operations start this year

Nebraska

Long-Baseline Neutrino Experiment 34 kton LArTPC in SD @ 4850 ft

1300 km baseline New 700 kW beam

(10 kton on surface has CD-1, but collaboration goal is larger detector underground)

NOvA 14 kt scintillator 700 kW off-axis FNAL beam 810 km baseline operations start this year

Mass Hierarchy Sensitivity

North Dako

Long-Baseline Neutrino Experiment 34 kton LArTPC in SD @ 4850 ft 1300 km baseline New 700 kW beam

(10 kton on surface has CD-1, but collaboration goal is larger detector underground)

good MH reach, and improvement with more mass & combination w/ others

Next: CP violation

Measure transition probabilities for $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

(matter effects understood, or absent)

$$\begin{split} P_{\nu_e\nu_\mu(\bar{\nu}_e\bar{\nu}_\mu)} &= s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{13}}{\tilde{B}_{\mp}}\right)^2 \sin^2 \left(\frac{\tilde{B}_{\mp}L}{2}\right) \\ \begin{array}{l} \text{Change of sign} \\ \text{for antineutrinos} \end{array} &+ c_{23}^2 \sin^2 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \left(\frac{AL}{2}\right) \\ &+ \tilde{J} \frac{\Delta_{12}}{A} \frac{\Delta_{13}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\underbrace{\oplus \delta}_{-} \frac{\Delta_{13}L}{2}\right) \\ &\tilde{J} \equiv c_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \qquad \Delta_{ij} \equiv \frac{\Delta m_{ij}^2}{2E}, \ \tilde{B}_{\mp} \equiv |A \mp \Delta_{13}|, \ A = \sqrt{2}G_F N_e \end{split}$$

$$\begin{split} \tilde{J} &\equiv c_{13} \, \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \qquad \Delta_{ij} \equiv \frac{\Delta m_{ij}}{2E_{\nu}}, \ \tilde{B}_{\mp} \equiv |A \mp \Delta_{13}|, \ A = \sqrt{2}G_F N_e \\ \theta_{13}, \Delta_{12}L, \Delta_{12}/\Delta_{13} \text{ are small} \end{split}$$

A. Cervera et al., Nuclear Physics B 579 (2000)

The Next Generation of CP Searches

LBNE (U.S.) new FNAL 700 kW beam + eventual PX (1300 km)

 δ_{CP} Resolution in LBNE with Project X

Hyper-K (Japan) upgraded T2K beam from J-PARC (300 km), 560 kton water Cherenkov

A different approach for v CPV: DAE $\delta ALUS$

Multiple stopped-pion neutrino sources:

needs

study

J. Conrad & M. Shaevitz, Multiple Cyclotron Method to Search for CP Violation in the Neutrino Sector, arXiv:0912.4079, Phys. Rev. Lett. 104, 141802 (2010)

at short baseline

And thinking further ahead:

eventually limited by systematics... need well-understood beams

Neutrino factories

storage ring of muons decaying to neutrinos

$$\mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e$$

Neutrino Factory at RAL

arXiv:1206.0294

Long-term CP reach

Summary of "3-flavor" oscillation physics

Observable	Signature	Next steps	
θ_{13}	Small appearance of v_e in v_μ beam; Disappearance of reactor anti- v_e	Long-baseline beams; reactor experiments	
Mass hierarchy	Matter-induced $\nu/$ anti- ν asymmetry; anti- ν_e oscillation pattern; (cosmology, 0nbbdk,)	Long-baseline beams; reactor experiments; atmospheric neutrinos*	
CPV	v & anti-v oscillation	Long-baseline beams; cyclotron- based beams; neutrino factories	

Summary of "3-flavor" oscillation physics

Observable	Signature	Next steps	
θ_{13}	Small appearance of v_e in v_μ beam; Disappearance of reactor anti- v_e	Long-baseline beams; reactor experiments	DONE
Mass hierarchy	Matter-induced $\nu/$ anti- ν asymmetry; anti- ν_e oscillation pattern; (cosmology, 0nbbdk,)	Long-baseline beams; reactor experiments; atmospheric neutrinos [*]	
CPV	v & anti-v oscillation	Long-baseline beams; cyclotron- based beams; neutrino factories	

Summary of "3-flavor" oscillation physics

Observable	Signature	Next steps	
θ_{13}	Small appearance of v_e in v_{μ} beam;Disappearance ofreactor anti- v_e	Long-baseline beams; reactor experiments	DONE
Mass hierarchy	Matter-induced v/ anti-v asymmetry; anti-v _e oscillation pattern; (cosmology, 0nbbdk,)	Long-baseline beams; reactor experiments; atmospheric neutrinos*	
CPV	v & anti-v oscillation	Long-baseline beams; cyclotron- based beams; neutrino factories	

All of this discussion is in the context of the standard 3-flavor picture and testing that paradigm....

There are already some slightly uncomfortable data that don't fit that paradigm...

Open a parenthesis:

Outstanding 'anomalies'

LSND @ LANL (~30 MeV, 30 m)

Excess of $\overline{\mathbf{v}}_{\mathbf{e}}$ interpreted as $\ \overline{\nu}_{\mu} \to \overline{\nu}_{e}$

$\rightarrow \Delta m^2 \sim 1 \text{ eV}^2$: inconsistent with 3 v masses

MiniBooNE @ FNAL (v, v ~1 GeV, 0.5 km)

- unexplained >3 σ excess for E < 475 MeV in neutrinos (inconsistent w/ LSND oscillation)
- no excess for E > 475 MeV in neutrinos (inconsistent w/ LSND oscillation)
- small excess for E < 475 MeV in antineutrinos (~consistent with neutrinos)
- small excess for E > 475 MeV in antineutrinos (consistent w/ LSND)

- for E>200 MeV, both nu and nubar consistent with LSND

Also: possible deficits of reactor $\overline{\nu}_e$ ('reactor anomaly') and source ν_e ('gallium anomaly')

Sterile neutrinos?? (i.e. no normal weak interactions) Some theoretical motivations for this, both from particle physics & astrophysics. Or some other new physics??

Ideas to address these anomalies...

Many more! see e.g. arXiv:1204.5379

Parenthesis is not closed...

Possible futures

exciting new world to explore!

fill in the 3-flavor parameters and keep pushing on the paradigm

anomalies go away

Summary

We now have a pretty robust, simple 3-flavor neutrino paradigm, describing most of the data

Still a few unknown parameters in this picture, notably MH and CP δ , but clear steps to take

- MH: multiple approaches (all challenging but conceivable)
- CP δ: standard LBL approach is promising and plenty of long-term ideas....

need to push on the paradigm w/ precision measurements

Anomalies are still out there... they may or may not go away...

Extras/Backups

Oscillation probabilities in a 3-flavor context

For appropriate L/E (and U_{ij}), oscillations "decouple", and probability can be described by the 2-flavor expression

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

CERN Neutrinos to Gran Sasso

higher energy beam (~17 GeV, above τ threshold), fine-grained tracking detectors

OPERA

lead/emulsion sandwich + active scintillator strip planes + magnetic spectrometer

ICARUS

600 ton liquid argon TPC

 v_e candidate

Side note: MINERvA

Detector at NuMI (Fermilab) to measure cross-sections of ~GeV neutrinos on nuclear targets (finely-segmented scintillator + em& hadronic calorimeters)

Vital to understand interactions for interpretation of long baseline oscillation experiment backgrounds & systematics!

But what it's really about is testing the paradigm...

How well do we need to know the parameters?

We need not only to fill in the missing parameters, but make precision measurements of *all* the parameters

The off-axis trick

2-body pion decay kinematics

Off-axis, ν energy becomes relatively independent of π energy

Get more sharply peaked v energies, and more flux at the oscillation minimum → good for background reduction and oscillation fits

Current off-axis long-baseline experiments

T2K: "Tokai to Kamioka"

NOvA at NuMi

Pre-existing detector: Super-K New beam from J-PARC 295 km baseline Water Cherenkov detector Pre-existing beam: Fermilab NuMi upgrade 810 km baseline Scintillator detector

Signature of non-zero θ_{13} at far detector

MUON

ELECTRO

NEUTRINO

3500

5000

500

1000 1500 2000 2500

Reconstructed v Energy

Look for electron appearance: single fuzzy rings excess on top of background, with expected spectrum

v_e appearance results from MINOS are consistent

Possible large (multi-kton) detector technologies

Water Cherenkov

Liquid Argon

Excellent particle reconstruction, high efficiency

Liquid Scintillator

Low energy thresh, good resolution (but: high energy particle

reconstruction difficult for LBL)

What you're looking for experimentally: electron flavor appearance on top of background (NC, beam v_e , mis-ids) C charged-current quasi-elastic W^+ A LAr detector (in principle) reconstructs everything $v_{I} + N \rightarrow I^{\pm} + N'$ G. Zeller CC neutrino cross section (10⁻³⁸ cm² TOTAL A WCh detector needs to cut hard to select QE clean QE **events**

E. (GeV)

A long-baseline beam works well

LBNE events at 1300 km w/ oscillation probabilities

34 kton LAr ~ 200 kt WCD because of better LAr efficiency: detector sizes for technology choice set for ~ equal oscillation sensitivity

After long decision-making process for LBNE... it's Liquid Argon (waiting for FNAL/DOE concurrence)

(4850 ft at Homestake) is favored

The baseline matters:

The NOvA experiment MH reach

- 14 kt scintillator
- 700 kW off-axis FNAL beam
- 810 km baseline
- operations start this year

6 year run \Rightarrow >2 σ MH determination for 35% of δ range

LBNE Sensitivity to mass hierarchy

Need both statistics and ability to reconstruct v energy & direction

Examples: Hyper-K

- Tochibora mine, near Kamioka;

- (1500-1750 mwe)
- 560 ktons (25 x SK)
- LOI on arXiv:1109.3262

IceCube DeepCore/PINGU

- enormous detector volume & atmnu statistics
- sparse PMTs, so poor reconstruction
- → PINGU infill for be reconstruction & lower threshold
- arXiv:1306.5846

MASS HIERARCHY @ INO

Events generated using Nuance and ICAL resoln in E and $\cos\theta_{zenith}$

Neutrino 2012

Sandhya Choubey

June 5, 2012

29

Experiments going after MH with atmnus

	Experiment	Туре	Location	Reconstruction	Mass (kt)	Notes
	Super-K	Water Cherenkov	Japan	Good	22.5	Good reconstruction, low stats
	Hyper-K	Water Cherenkov	Japan	Good	560	Good reconstruction and stats
	IceCube DeepCore	Long String Water Ch.	South Pole	Poor	Mton	Systematics under study, huge stats
	PINGU	Long String Water Ch.	South Pole	Improved	Mton	Systematics under study, huge stats
	ORCA	Long String Water Ch.	Europe	Poor	Mton	Systematics under study, huge stats
	ICAL@INO	Iron Calorimeter	India	Good	50	Magnetized→ lepton sign selection
	LBNE	LArTPC	USA	Excellent	10-34	Excellent reconstruction
	GLACIER	LArTPC	Europe	Excellent	20-100	Excellent reconstruction

The Reactor MH Method

Vacuum oscillation frequencies depend on $\Delta m^2/E_v$ Different MH \rightarrow slightly different frequencies at reactor energies

Requires:

- good energy resolution (~3%)
- excellent understanding of energy scale (fraction of a percent)

Proposed reactor experiments going after MH

Daya Bay II (China)

- 20 kt detector at 55-60 km
- ~ 40 GW_{th} power
- ~700 m underground
- < 3% resolution @ 1 MeV
- ~0.2% energy calibration

RENO-50 (South Korea)

- 18 kt detector at 47 km
- 16.8 GW power (Yonggwang)
- >500 m underground
- similar detector requirements

One more way of going after MH: supernova neutrinos

Core collapse burst neutrinos: all flavors, few 10's of MeV

Distinctive spectral swap features depend on neutrino mass hierarchy, for neutrinos vs antineutrinos

(also: matter effects in Earth)

Duan & Friedland, arXiv:1006.2359

An anecdotal example

(1 second late time slice, flux from H. Duan w/collective effects)

There will be very rich information in the observed flavor, time, energy spectra

Worldwide sensitivity to multiple flavors is key: different detection technologies are highly complementary

LBNE CP sensitivity

LBNE events at 1300 km w/ oscillation probabilities

Long range plan for LBNE

Other long-baseline programs: Hyper-K in Japan

M. Yokoyama

62010

Large detector and long-baseline programs in Europe

LAGUNA-LBNO

MEMPHYS: 0.5 Mt water GLACIER: 100 kt LAr LENA: 50 kt scintillator

investigated sites

Pyhäsalmi

(Ž300 km)

Neutrinos in the proposed CERN Strategy

f) Rapid progress in neutrino oscillation physics, with significant European involvement, has established a strong scientific case for a long-baseline neutrino programme exploring CP violation and the mass hierarchy in the neutrino sector. CERN should develop a neutrino programme to pave the way for a substantial European role in future long-baseline experiments. Europe should explore the possibility of major participation in leading neutrino projects in the US and Japan.

Under discussion: collaboration on LBNE, HK; LBNO demonstrator @CERN, CENF, vStorm

(Parenthesis 1

LSND at Los Alamos

MiniBooNE Booster Neutrino Experiment at Fermilab

L~ 500 m

E_v~ 1 GeV from 8 GeV booster
0.8 kton of mineral oil

Test $v_{\mu} \rightarrow v_{e}$ at same L/E as LSND with both neutrinos and antineutrinos

Neutrinos

Neutrinos:

- unexplained 3 σ excess for E < 475 MeV (inconsistent w/ LSND oscillation)
- no excess for E > 475 MeV

(inconsistent w/ LSND oscillation)

Antineutrinos:

- small excess for E < 475 MeV, ~consistent with neutrinos
- small excess for E > 475 MeV (less than before) (consistent w/ LSND, 15% consistent w/ no osc)
- more antineutrino running, through spring 2012
 also: μBooNE (LAr), other ideas (?)
 Parenthesis 1)

"Reactor neutrino anomaly"

arXiv:1101.2755

- Reactor neutrino flux calculations recently reevaluated (+3%, smaller uncertainty)
- Now historical data show deficit, <2% consistent w/expectation
- Sterile neutrino hint?

Latest MiniBooNE results

arXiv:1303.2588

E_v^{QE} >200 MeV

What about the absolute neutrino mass scale?

Experimental approaches: aiming for sub-eV sensitivity

Another way of getting at absolute neutrino mass

Fits to cosmological data: CMB, large scale structure, high Z supernovae, weak lensing,...

(model-dependent)

from Planck

$$\sum m_i < \sim 0.6 \text{ eV}$$

And some giant questions I will omit...

How do we add the masses to the SM? Are neutrinos Majorana or Dirac?

$$\langle M_{\rm eff} \rangle^2 = |\sum_i U_{ei}^2 M_i|^2$$

