Measurement of the chemical composition of the ultra-high-energy cosmic rays with the Pierre Auger Observatory

Matthias Plum for the Pierre Auger Collaboration

Physics Institute III A RWTH Aachen University

August 14, 2013

SPONSORED BY THE

Federal Ministry of Education and Research

PIERRE AUGER

M. Plum (for the Pierre Auger Collab.)

Outline

Ultra High Energy Cosmic Rays (UHECR)

- most energetic source of elementary particles available to scientists macroscopic energies $E > 1 \text{ EeV} (10^{18} \text{ eV})$
- but very low flux!

Extensive air shower (EAS)

- UHECR produce large shower of particles in Earth's atmosphere (calorimeter)
- primary cosmic ray characteristics obtained from the measured properties of extensive air showers

Pierre Auger Observatory

- hybrid cosmic ray detector for energies above 10¹⁷ eV located in the Pampa Amarilla near Malargüe, Argentina
- measures energy, arrival directions and properties of extensive air showers

Pierre Auger Observatory

- hybrid cosmic ray detector for energies above 10¹⁷ eV located in the Pampa Amarilla near Malargüe, Argentina
- measures energy, arrival directions and properties of extensive air showers

Pierre Auger Observatory

- hybrid cosmic ray detector for energies above 10¹⁷ eV located in the Pampa Amarilla near Malargüe, Argentina
- measures energy, arrival directions and properties of extensive air showers

FD and SD

SD-Reconstruction

- Energy and arrival direction
- Primary properties:
 - Risetime asymmetry
 - Muon production depth

FD-Reconstruction for hybrid events

- accurate energy measurement
- arrival direction reconstruction
- composition sensitive observable shower maximum *X_{max}*

M. Plum (for the Pierre Auger Collab.)

August 14, 2013 7 / 17

Measurement of the air shower parameter X_{max}

X_{max} -distributions from Monte-Carlo

• $< X_{max} >$ and $\sigma_{X_{max}}$ sensitive to composition of primary UHECRs

X_{max} -distribution

- Hybrid dataset from 01/12/2004 31/12/2012
- Energy threshold $10^{17.8} \, eV$
- 19872 events selected

$< X_{max} >$ dependency on the energy

Comparison of $\langle X_{max} \rangle$ and $\sigma(X_{max})$ with interaction models

Parametrization¹ of X_{max} :

 f_E $< X^p_{max} >$ $< \sigma^2_{sh} >$ < ln A > $\sigma(ln A)$

energy and model dependent parameter average shower depth of protons mass-averaged shower fluctuations mean log. mass distribution variance log. mass distribution

 1 J. Linsley, Proc. 18th ICRC 1983 and Proc. 19th ICRC 1985 and also K.H. Kampert& M.Unger, APP (2012) 660 and Auger Collab., JCAP (2013) 026

< In A > and σ^2_{InA} from Auger data

Azimuthal asymmetry in SD events

 Θ_{max} is defined as the value of $sec(\Theta)$ for the zenith angle that gives maximum asymmetry

- $\bullet\,$ events with $30^\circ < zenith < 60^\circ\,$
- *E* > 20 EeV
- 0.5 < r < 2 km from shower axis

Muon Production Depth

- use muon arrival time differences
- events with 55° <zenith< 65°
- *E* > 20 EeV
- r > 1.8 km from shower axis

Summary

Summary

- FD X_{max} measurement shows change of composition with increasing energy
- mixed scenario: light dominated at low energies, heavier with increasing energy (interpretation is very model dependent)
- challenging science case at the highest energy

