The full $\mathcal{O}(\alpha)$ electroweak radiative corrections $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma$ at ILC with GRACE-Loop.

P.H. Khiem(SOKENDAI Univ. and KEK.)

In collaboration with

Y. Kurihara, T. Kaneko, J. Fujimoto, T. Ishikawa, Y. Shimizu (KEK), Y. Yasui (TMC); K. Kato, N. Nakazawa, K. Tobimatsu (Kogakuin Univ.); M. Igarashi (Tokai Univ.); J.A.M. Vermaseren (NIKHEF), and T. Ueda (KIT).

Quy Nhon, August 14, 2013

- Introduction
- **O The GRACE-Loop system**
- Calculation the physical processes with GRACE-Loop: $e^+e^- \rightarrow t\bar{t}\gamma$ as a example.
- So The physical results of the processes: $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma.$
- Future plan and conclusions

Introduction

- Thank to the achievements of the LHC: the discovery a new boson compatible with a SM Higgs ^{1,2}.
- **2** We expect that the main goals of the ILC program are
 - precise measurements of Higgs properties: Higgs Boson mass, Spin, CP, Higgs couplings.;
 - precise measurements of the interaction of top quarks, gauge bosons, ...;
 - searches for physics beyond the Standard Model (BSM).

 \implies Electroweak radiative corrections to e^+e^- collision play important role at the high precision program of ILC.

● In this talk, we present the calculation of two important processes: $e^+e^- \rightarrow t\bar{t}\gamma$, $e^+e^-\gamma$ at ILC with GRACE-Loop.

¹Physics Letters B 716 (2012) 30-61 ²Phys.Lett. B716 (2012) 1-29

Introduction

Motivation of $e^+e^- \rightarrow t\bar{t}\gamma$ calculation

- The experimental results of CDF and D0 observed a large top quark forward-backward asymmetry.
- In the future, we expect that the measurement will be performed at the ILC without QCD background

 \implies The precise calculations of top pair production and top pair with photon production in e^+e^- collisions are considered.

- **③** One-Loop EW corrections to $e^+e^- \rightarrow t\bar{t}$ were calculated by
 - J. Fujimoto and Y. Shimizu et al, Mod. Phys. Lett. 3A, 581 (1988);
 - J. Fleischer, A. Leike, T. Riemann et al.Eur. Phys. J. C 31, 37 (2003).

\implies The calculation of $e^+e^- \rightarrow t\bar{t}\gamma$ with GRACE-Loop is presented in this talk.

Motivation of $e^+e^- \rightarrow e^+e^-\gamma$ calculation

- Electroweak radiative corrections to Bhabha scattering are important for the luminosity determination.
- The status of electroweak radiative corrections to Bhabha scattering.

(a) One-loop electroweak corrections to $e^+e^- \rightarrow e^+e^-$:

- J. Fujimoto et al: Prog. Theor. Phys. Supplement (1990) 100.
- M. Böhm et al: Nuclear Physics B304 (1988) 687-711
- (b) Two-loop QED correction to $e^+e^- \rightarrow e^+e^-$:
 - A.A. Penin: PhysRevLett.95.010408.

 \implies We also present a full $\mathcal{O}(\alpha)$ electroweak radiative corrections to process $e^+e^- \rightarrow e^+e^-\gamma$ GRACE-Loop in this talk.

GRACE-Loop is a generic automated program for calculating High Energy Physics processes ³.

- All Feynman diagrams for a given process at fixing order of perturbation theory.
- A FORM or REDUCE code.
- A Fortran code generated for amplitude calculations.
- Kinematic library.
- The multi-dimensional integration by BASES.
- Event generation by SPRING.

The GRACE-Loop system has also been used to calculate $2 \rightarrow 3$ -body processes such as $e^+e^- \rightarrow ZHH$, $e^+e^- \rightarrow t\bar{t}H$, $e^+e^- \rightarrow \nu\bar{\nu}H$ and $2 \rightarrow 4$ -body process as $e^+e^- \rightarrow \nu_{\mu}\bar{\nu}_{\mu}HH$.

³Phys. Rept. 430 (2006) 117

Discussion on the difficulty of $2 \rightarrow 3, 4$ process calculations

1 The large numerical cancellation problem.

produced by GRACEFIG

Amplitude	Non-Axial Gauge	Axial Gauge
$\mathcal{M}_1^2 + \mathcal{M}_2^2$	$0.1116212357 \times 10^{+13}$	$0.3644158264 \times 10^{+02}$
$2\mathcal{M}_1^*\mathcal{M}_2$	$-0.1116212356 \times 10^{+13}$	$0.1546482734 \times 10^{+03}$
$ \mathcal{M}_1 + \mathcal{M}_2 ^2$	$0.1910871582 imes 10^{+03}$	$0.1910898560 \times 10^{+03}$

② The Monte-Carlo integration step costs much in CPU time.

The process: e^+e^-	$r ightarrow e^+ e^- r$	γ
CPU	Memory	CPU time
Intel(R) Xeon(R), X5660@2.80GHz	49 GB	\geq 3 months @ \sqrt{s} .

 \implies BASES with MPI⁴ in quadruple precision calculation.

⁴The Message Passing Interface: http://www.mcs.anl.gov/research/projects/mpi

Quy Nhon, August 14, 2013 $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma$ at ILC with GRACE-Loop

Discussion on the difficulty of $2 \rightarrow 3, 4$ process calculations

The GRACE-Loop system

Model = "nlg2301.mdl"; Process: $ELWK = \{5, 3\};$ Initial = $\{electron, positron\}$; $Final = \{photon, t, t-bar\};$ Expand = Yes; OPI = No:Kinem = "2302"; Pend:

- 16 tree diagrams,
- 1814 one-loop diagrams.

The total cross section is

$$\sigma_{tot} = \sigma_{Tree} + \sigma_{Loop}(C_{UV}, \{\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\epsilon}, \tilde{\kappa}\}, \lambda) + \sigma_{Tree} \delta_{soft}(\lambda, E_{\gamma} < k_c) + \sigma_{Hard}(k_c)$$

The hard contribution is the process: $e^-e^+ \rightarrow t\bar{t}\gamma\gamma$.

- Soft photon with $\lambda \leq E_{soft} \leq k_c$;
- Hard photon with $E_{hard} \ge k_c$.

The non-linear gauge fixing Lagrangian condition⁵

$$\mathcal{L}_{GF} = -\frac{1}{\xi_W} |(\partial_\mu - ie\tilde{\alpha}A_\mu - igc_W\tilde{\beta}Z_\mu)W^{\mu+} \\ + \xi_W \frac{g}{2}(v + \tilde{\delta}H + i\tilde{\kappa}\chi_3)\chi^+|^2 \\ -\frac{1}{2\xi_Z}(\partial Z + \xi_Z \frac{g}{2c_W}(v + \tilde{\epsilon}H)\chi_3)^2 - \frac{1}{2\xi_A}(\partial A)^2 |$$

⁵Phys. Rept. **430**, 117 (2006)

Test on the calculation

$$\sigma_{tot} = \sigma_{Tree} + \sigma_{Loop}(C_{UV}, \{\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\epsilon}, \tilde{\kappa}\}, \lambda) \\ + \sigma_{Tree} \delta_{soft}(\lambda, E_{\gamma} < k_c) + \sigma_{Hard}(k_c)$$

- *C_{UV}* independence of the result.
- **2** Photon mass (λ) independence of the result.
- Gauge invariance of the result.
- *k_c* independence of the result.
- **S** Cross-check with orther calculation.

The result is stable over 30 digits in quadruple precision.

The result are stable over 18 digits.

3. Gauge invariance of the amplitude check

$(ilde{lpha}, ilde{eta}, ilde{\delta}, ilde{\kappa}, ilde{\epsilon})$	$2\mathcal{R}(\mathcal{M}^+_{Tree}\mathcal{M}_{Loop})$
$(0,0,0,0,0) imes 10^0$	$-6.7575992336127728658083765531206 \times 10^{-3}$
$(1,2,3,4,5) \times 10^1$	$-6.7575992336127728658083831456193 \times 10^{-3}$
$(1,2,3,4,5) \times 10^2$	$-6.7575992336127728658090556378842 \times 10^{-3}$

The result is stable over 21 digits in quadruple precision.

Test on the calculation

$$\sigma_{tot} = \sigma_{Tree} + \sigma_{Loop}(C_{UV}, \{\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\epsilon}, \tilde{\kappa}\}, \lambda) + \sigma_{Tree} \delta_{soft}(\lambda, E_{\gamma} < k_c) + \sigma_{Hard}(k_c)$$

4. *k_c* independence of the result.

k_c [GeV]	σ_H	σ_S	σ_{S+H}
10^{-5}	4.172723×10^{-02}	$5.885469 imes 10^{-02}$	0.10058192
10^{-3}	2.926684×10^{-02}	7.131737×10^{-02}	0.10058421
10^{-1}	1.678994×10^{-02}	8.377319×10^{-02}	0.10056313

The physical results of the process $e^+e^- \rightarrow t\bar{t}\gamma$

The physical results of the process $e^+e^- \rightarrow t\bar{t}\gamma$

Quy Nhon, August 14, 2013 $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma$ at ILC with GRACE-Loop

The physical results of the process $e^+e^- \rightarrow t\bar{t}\gamma$

$$A_{FB} = \frac{\sigma(0^0 \le \theta_t \le 90^0) - \sigma(90^0 \le \theta_t \le 180^0)}{\sigma(0^0 \le \theta_t \le 90^0) + \sigma(90^0 \le \theta_t \le 180^0)}$$

The process $e^+e^- \rightarrow e^+e^-\gamma$ with GRACE-Loop.

Model = "nlg2301_LT(FF).mdl";
Process;
ELWK = {5,3};
Initial = {electron, positron};
Final = {photon, electron, positron};
Expand = Yes;
OPI = No;
Kinem = "2302";
Pend;

- 32 tree diagrams,
- 3456 one-loop diagrams.

The physical results of process $e^+e^- \rightarrow e^+e^-\gamma$

Quy Nhon, August 14, 2013 $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma$ at ILC with GRACE-Loop

The physical results of process $e^+e^- \rightarrow e^+e^-\gamma$

 $d\sigma/dm_{e^+e^-}$ [pb] at 250 GeV.

 $d\sigma/dm_{e^+e^-}$ [pb] at 1 TeV.

Conclusions

- We introduced to the GRACE-Loop system which is a generic automated program for calculating High Energy Physics processes.
- The full $\mathcal{O}(\alpha)$ electroweak radiative corrections $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma$ at ILC were calculated successfully with GRACE-Loop.

The physical results of the process $e^+e^- \rightarrow t\bar{t}\gamma$

- We find that the numerical value of the weak corrections varies from 10% to -16% in the range of center-of-mass energy from 360 GeV to 1TeV.
- We also obtain a large value for the top quark forward-backward asymmetry in the $t\bar{t}\gamma$ process as compared with the one in $t\bar{t}$ production.

Conclusions

- We introduced to the GRACE-Loop system which is a generic automated program for calculating High Energy Physics processes.
- The full $\mathcal{O}(\alpha)$ electroweak radiative corrections $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma$ at ILC were calculated successfully with GRACE-Loop.

The physical results of the process $e^+e^- \rightarrow e^+e^-\gamma$

- We find that the numerical value of the full electroweak radiative corrections varies from -2% to -20% in the range of center-of-mass energy from 250 GeV to 1TeV.
- This contribution is sizable. The full electroweak correction to the process play important role for the determination luminosity at ILC in the future.

Our next target's calculation is $pp \rightarrow VV + 1$ **jet at LHC**

- γγ + 1 jet: background for H → γγ search.
 W⁺W⁻ + 1 jet
 - Background for $H \to W^+ W^-$ search,
 - BSM signal searchs,
 - The precise measurement VVV coupling at LHC.
- Your sugesstion are valuable for us!!!

Thank you very much for your attention!

Quy Nhon, August 14, 2013 $e^+e^- \rightarrow t\bar{t}\gamma, e^+e^-\gamma$ at ILC with GRACE-Loop