

Properties of the Higgs Boson

<u>Rishi Patel</u>

Rutgers University

On behalf of the CMS and ATLAS Collaborations

Higgs at the LHC CERN

One of the goals of the LHC physics program is to unravel the origin of Electroweak symmetry breaking:

With the full Run 1 data (~30/fb) the experiments can test the compatibility of the new boson with the prevailing theory: Standard model Higgs boson

decay channels to test SM

compatibility

1000

From LHC cross sections

Group

Standard Model Higgs

 $V(\varphi^{\dagger}\varphi) = \frac{1}{2} (\lambda^2 |\varphi|^4 - \mu^2 |\varphi|^2) \quad \text{free parameter: } 2\sqrt{\mu} = \mathbf{M}_{\mathrm{H}}$

 $|\Phi| = \sqrt{\Phi^{\dagger}\Phi}$

<u>COMPATIBILITY:</u> Compare the SM prediction to the observed for different quantities:

signal strength:σ_{obs} x BR/σ_{SM} x BRsM coupling scale:κ*g_{SM}=g

Presence of non-SM particles in the loop

Mass Measurement

- For current data: Δm~±0.5GeV but projections at 300/ fb (3000/fb) at 14TeV show Δm~100MeV (50MeV) based on Snomass projections
- Best fit mass compatible better than 0.1 GeV with the model independent

Combined Signal Streng

 $H \rightarrow \tau\tau \text{ (VH tag)}$ $H \rightarrow ZZ \text{ (0/1 jet)}$ $H \rightarrow ZZ \text{ (2 jets)}$ -4

 Simultaneously analyze all selected data across all decay modes and measure the overall deviation from the SM cross-section

CERN

ATLAS: Combined *μ*=1.30±0.20 CMS: Combined *μ*=0.80±0.14

- <u>NOW</u>: High sensitivity decay modes basically drive the combination (~15% precision on combined signal strength)
- <u>AT 14TeV</u>: At high luminosity 300/fb, less sensitive decay modes have much smaller uncertainties. The combined signal strength will be even more precise

CMS Projection

Production Modes

CERN

Coupling Scale Factors

Tree level amplitudes:

$$\sigma \times BR(ii \to H \to ff) = \frac{\sigma_{ii}\Gamma_{ff}}{\Gamma_{H}}$$
$$\Gamma_{jj} \propto \frac{(m_{jj}\kappa_{jj})^2}{v^2} \propto \kappa_{jj}^2 \Gamma_{jj}^{SM}$$

CERN

channel can be represented as a product of coupling scale factors

Assume: SM tensor structure J^P=0⁺ and SM BR to fermions/Vector bosons:

ATLAS $\kappa_{F} \in [0.73, 1.07]$ $\kappa_{V} \in [1.05, 1.21]$ at 68% C.L. CMS K_F∈ [0.61,1.33] K_V∈ [0.74,1.06] at 95% C.L.

(common scale

 $K = K b \dots$

(common scale

factor for all

fermions)

 $K_{F=}$

bosons)

K V =

K W = K Z

7

ĸν

SM Compatibility Tests

2

 \triangleleft

Custodial symmetry: W/Z coupling to Higgs: gZ/gW ≈1

- Issue is $\Gamma_{\gamma\gamma}$ depends on κW
- CMS and ATLAS: Decouple the event rate of $H \rightarrow \gamma \gamma$ from $\kappa w/\kappa z$ by introducing additional free parameters in the likelihood

Probe Loop Corrections:

gg→H $H \rightarrow \gamma \gamma$

- Scenario 1 New particles contribute negligibly to the total width: Ftotal=FSM
 - Fit kg ky
- Scenario 2 Allow new particles to contribute to the total width: Ftotal=FSM+FBSM
 - Fit kg, kγ, ΓBSM

8

CERN

SUMMARY: Couplings and Total Width

- Ratios of couplings requires no assumption on the total width
- Can include total width including extra contributions:

 $\Gamma_H = \Gamma_{SM} + \Gamma_{BSM}$

 $BR_{SM} = \frac{\Gamma_{BSM}}{\Gamma_H}$

ERN

- For 300/fb at 14TeV the statistical uncertainty are below 1%
- Theory systematics most important: QCD scale, pdf uncertainties, BR uncertainties

Spin Hypothesis Test

• Test Spin 0⁺ SM Higgs Hypothesis vs a Spin 2⁺_M hypothesis.

^{inary} vs = 7 TeV, L = 5.1 tb¹ vs = 8 TeV, L = 19.6 tb¹ vs = 7 TeV, L = 19.6 tb¹ vs = 8 TeV, L = 19.6 tb¹ vs = 7 Te

 Spin 2⁺_M use graviton model simulation produced via gluon fusion and quark-antiquark (giving different polarization)

WW: Not fully reconstructed final state but have angles computed from the 2 leptons

MVA classifier is trained with final state observables ZZ predictions:

Wednesday, August 14, 2013

New Studies

[fb/GeV]

1.6

1.4

0.8

0.6 0.4

0.2

POWHEG

<u>Use high signal yield mode: $H \rightarrow \gamma \gamma$ to probe kinematic properties of production/decay:</u>

- Extract a signal yield for bins of a kinematic variable
 - dp⁺ correct yield for acceptance x efficiency, resolution etc. to compare $\frac{1}{2}$ to theory predictions
 - (Left) Compare data to simulation (NLO and NNLO for ggH) Chi2: NLO=0.55 and NNLO=0.39.
 - (Right) signal strength in bins of CS angle offers a potentially model independent spin measurement

Flavor changing neutral current: $t \rightarrow c(u)H$

- Very good indicator of new physics
- Select tt events with one top in fully hadronic or 1lepton channel
- Use $H \rightarrow \gamma \gamma$ search selection
- $Br(t \rightarrow c(u)H) < 0.83\%$ (0.53% expected) at 95% confidence

Wednesday, August 14, 2013

12

Cern Conclusion

- How compatible is the new boson with the Standard Model?
- Measured properties all compatible with the SM Higgs:
 - Combined signal strengths across all decay modes and also for the different production modes are compatible with SM production
 - Couplings do not deviate from the SM predictions. Custodial symmetry is preserved
 - Data is consistent with 0⁺ spin hypothesis
 - No strong sign of **F**BSM
- Starting to probe differential signal strengths and directly search for new physics (Flavor Changing Neutral Current)
- All of the above measurements will be much more precise at 14TeV with more data
 and also smaller theoretical uncertainties
- REFERENCE: HIG-13-005, ATLAS-CONF-034, CMS Public Note 2013/002, ATLAS-2013-072, ATLAS-2013-081
- PUBLIC TWIKI: CMS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
 ATLAS https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

Additional Material

Test Statistic

- hypothesis μ , θ_{μ} model of uncertainty
- Denominator maximized Likelihood

• Example of Signal + Background hypothesis testing:

- Red psuedo-data (statistical toys) of signal +background (expected signal predicted by SM cross-section)
- Blue psuedo-data (statistical toys) background only
- Observed value is the value that minimizes the the above ratio in data (value of μ,θ most compatible with the data known as the best fit values)

• Distribution of test statistics follows a χ^2 distribution: p-value obtained by integrating from the obs value to inf. Used to compute the confidence interval

 CLs quantifies the significance of the observed value (consistent with a fluctuating background? Or an excess consistent with signal hypothesis

- Can include more than one hypothesis value (increase ndof in the chi2). Here there are two hypotheses variables included in the likelihood: mass, σobs/σSM (signal strength based on SM cross-section)
- CLs corresponding to 68% is the contour around the best fit values (cross)
 15

14TEV PROJECTIONS

Based on SNOWMASS studies:

- Extrapolate from current dataset to 300/fb (3000/fb) at 14TeV with the present level of detector performance
- 2 Scenarios for projected uncertainties:
 - SCENARIO 1: all systematic uncertainties are left unchanged
 - SCENARIO 2: Theoretical uncertainties scale by 1/2 and other systematic uncertainties scale by 1/sqrt(Luminosity) (more optimistic scenario)

Higgs Doublets

- In two Higgs Doublet models the yukawa couplings of fermions to neutral Higgs can be substantially modified
 - MSSM check u,d coupling ratio

 Also in more general scenarios leptons can virtually decouple from the Higgs so test lepton/quark coupling ratio

• one is within the 68% CL for both

SPIN in CS Frame

Differential Mu

Agreement at low statistics is fair:

x²/ndof p-value^{0.8} 6.9/8 0.55 5.3/5 0.38 7.9/10 0.64

χ²/ndof p-value
4.6/4 0.33
4.6/4 0.33

