Properties of the Higgs Boson

Rishi Patel
Rutgers University

On behalf of the CMS and ATLAS Collaborations
One of the goals of the LHC physics program is to unravel the origin of Electroweak symmetry breaking:

Breakthrough: Discovery by CMS and ATLAS of a new boson

With the full Run 1 data (~30/fb) the experiments can test the compatibility of the new boson with the prevailing theory: Standard model Higgs boson

125 GeV: Many available production modes and decay channels to test SM compatibility

FUTURE: 14 TeV SNOWMASS Projections
Standard Model Higgs

free parameter: \(2\sqrt{\mu}=M_H\)

SM Higgs: \(v=\mu/\sqrt{\lambda}=2M_W/g\)

Tree level

\[
V(\phi^+\phi) = \frac{1}{2}(\lambda^2 |\phi|^4 - \mu^2 |\phi|^2)
\]

W, Z

h --- f

\[
g_MW = \frac{gMZ}{\cos \theta_W}
\]

Loop level

Standard

\[
g_M_f = \frac{gM_f}{2M_W}
\]

COMPATIBILITY: Compare the SM prediction to the observed for different quantities:

- signal strength: \(\sigma_{\text{obs}} \times \text{BR}/\sigma_{\text{SM}} \times \text{BR}_{\text{SM}}\)
- coupling scale: \(\kappa \cdot g_{\text{SM}} = g\)

something new?

Presence of non-SM particles in the loop
Combining channels For Mass Measurement

CMS

ATLAS

CMS: $m_H = 125.7 \pm 0.3(sys) \pm 0.3(stat)$

ATLAS: $m_H = 125.5 \pm 0.2(sys)_{+0.5}^{0.6}(stat)$

- For current data: $\Delta m \sim \pm 0.5$ GeV but projections at 300/fb (3000/fb) at 14TeV show $\Delta m \sim 100$ MeV (50 MeV) based on Snolmass projections

- Best fit mass compatible better than 0.1 GeV with the model independent

MODEL DEPENDENT MEASUREMENT

All productions and BR are constrained to the SM predictions.
Combined Signal Strengths

- Simultaneously analyze all selected data across all decay modes and measure the overall deviation from the SM cross-section

ATLAS: Combined $\mu=1.30\pm0.20$

CMS: Combined $\mu=0.80\pm0.14$

- NOW: High sensitivity decay modes basically drive the combination (~15% precision on combined signal strength)
- AT 14TeV: At high luminosity 300/fb, less sensitive decay modes have much smaller uncertainties. The combined signal strength will be even more precise
Production Modes

Combined $\mu=0.80\pm0.14$

- 2D scan: Fermion coupling to Higgs vs. Vector Boson coupling: Each contour is for a different BR/BRSM so difficult to combine
- 1D Scan of ratio: Branching ratio of each decay cancels

ATLAS: $\frac{\mu_{ggF+t\bar{t}H}}{\mu_{VBF+VH}} = 1.2^{+0.7}_{-0.5}$

• Projection of 300/fb to 14TeV predicts a much tighter precision of ~10%
Coupling Scale Factors

Tree level amplitudes:

\[\sigma \times BR(ii \rightarrow H \rightarrow ff) = \frac{\sigma_f \Gamma_{ff}}{\Gamma_H} \]

\[\Gamma_{jj} \propto \frac{(m_j \kappa_j)^2}{v^2} \propto \kappa_{jj}^2 \Gamma_{jj}^{SM} \]

channel can be represented as a product of coupling scale factors

Assume: SM tensor structure \(J^P=0^+ \) and SM BR to fermions/Vector bosons:

(common scale factor for all fermions)

\(\kappa_F = \kappa_t = \kappa_b \ldots \)

(common scale factor for all vector bosons)

\(\kappa_V = \kappa_W = \kappa_Z \)

\(\kappa_H = 0.75 \kappa_f^2 \) + \(0.25 \kappa_V^2 \)

ATLAS \(\kappa_F \in [0.73, 1.07] \) \(\kappa_V \in [1.05, 1.21] \) at 68% C.L.

CMS \(\kappa_F \in [0.61, 1.33] \) \(\kappa_V \in [0.74, 1.06] \) at 95% C.L.
Custodial symmetry: \(W/Z \) coupling to Higgs: \(gZ/gW \approx 1 \)

- Issue is \(\Gamma_{\gamma\gamma} \) depends on \(\kappa W \)
- CMS and ATLAS: Decouple the event rate of \(H \rightarrow \gamma\gamma \) from \(\kappa w/\kappa z \) by introducing additional free parameters in the likelihood

Probe Loop Corrections:

\(H \rightarrow \gamma\gamma \quad gg \rightarrow H \)

- Scenario 1 New particles contribute negligibly to the total width: \(\Gamma_{\text{total}} = \Gamma_{\text{SM}} \)
 - Fit \(\kappa g \) \(\kappa \gamma \)
- Scenario 2 Allow new particles to contribute to the total width: \(\Gamma_{\text{total}} = \Gamma_{\text{SM}} + \Gamma_{\text{BSM}} \)
 - Fit \(\kappa g, \kappa \gamma, \Gamma_{\text{BSM}} \)
SUMMARY: Couplings and Total Width

- Ratios of couplings requires no assumption on the total width
- Can include total width including extra contributions:
 \[\Gamma_H = \Gamma_{SM} + \Gamma_{BSM} \]
 \[BR_{SM} = \frac{\Gamma_{BSM}}{\Gamma_H} \]
- For 300/fb at 14TeV the statistical uncertainty are below 1%
- Theory systematics most important: QCD scale, pdf uncertainties, BR uncertainties
Spin Hypothesis Test

- Test Spin 0^+ SM Higgs Hypothesis vs a Spin 2^+_M hypothesis.
 - Spin 2^+_M use graviton model simulation produced via gluon fusion and quark-antiquark (giving different polarization)

ZZ: Fully reconstructed 4-lepton final state:

WW: Not a fully reconstructed final state but have angles computed from the 2 leptons

MVA classifier is trained with final state observables

ZZ predictions:

Rules out 0^-

Confirms not 1

(pure gg $2m^+$)

(pure qq $2m^+$)

CMS WW/ZZ Combination: Exclude 2^+_m for pure ggH model at 2.84σ
Combined Spin Tests

\(\gamma \gamma \) CS frame: use angle between the photons in the collins-soper frame: Spin 0\(^{+}\) the angular distribution is isotropic as opposed to spin 2

\(\gamma \gamma \) sensitive at low qq’ admixture

WW sensitive at high qq’ admixture

ATLAS: WW, ZZ, \(\gamma \gamma \)

- Expected exclusion of spin 2\(^{+} \text{m} \) depends onqq’ very weakly
- Data is consistent with 0\(^{+} \) and 2\(^{+} \text{m} \) is excluded at 99.9 % confidence level
New Studies

Use high signal yield mode: H→γγ to probe kinematic properties of production/decay:

- Extract a signal yield for bins of a kinematic variable
- correct yield for acceptance x efficiency, resolution etc. to compare to theory predictions
- (Left) Compare data to simulation (NLO and NNLO for ggH) Chi2: NLO=0.55 and NNLO=0.39.
- (Right) signal strength in bins of CS angle offers a potentially model independent spin measurement

Flavor changing neutral current: t→c(u)H

- Very good indicator of new physics
- Select tt events with one top in fully hadronic or 1lepton channel
- Use H→γγ search selection
- Br(t→c(u)H)<0.83% (0.53% expected) at 95% confidence
• How compatible is the new boson with the Standard Model?
• Measured properties all compatible with the SM Higgs:
 • Combined signal strengths across all decay modes and also for the different production modes are compatible with SM production
 • Couplings do not deviate from the SM predictions. Custodial symmetry is preserved
 • Data is consistent with 0^+ spin hypothesis
 • No strong sign of Γ_{BSM}
• Starting to probe differential signal strengths and directly search for new physics (Flavor Changing Neutral Current)
• All of the above measurements will be much more precise at 14TeV with more data and also smaller theoretical uncertainties
• PUBLIC TWIKI: CMS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
 ATLAS https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
Additional Material
Test Statistic

\[q_\mu = -2 \log \frac{L(\mu, \theta_\mu)}{L(\hat{\mu}, \hat{\theta})} \]

- hypothesis \(\mu, \theta_\mu \) model of uncertainty
- Denominator maximized Likelihood
- Example of Signal + Background hypothesis testing:
 - Red psuedo-data (statistical toys) of signal + background (expected signal predicted by SM cross-section)
 - Blue psuedo-data (statistical toys) background only
 - Observed value is the value that minimizes the the above ratio in data (value of \(\mu, \theta \) most compatible with the data known as the best fit values)
 - Distribution of test statistics follows a \(\chi^2 \) distribution: \(p \)-value obtained by integrating from the obs value to inf. Used to compute the confidence interval

\[CL_s = \frac{p_s}{1-p_b} \]

- CLs quantifies the significance of the observed value (consistent with a fluctuating background? Or an excess consistent with signal hypothesis
- Can include more than one hypothesis value (increase ndof in the chi2). Here there are two hypotheses variables included in the likelihood: mass, \(\sigma_{\text{obs}}/\sigma_{\text{SM}} \) (signal strength based on SM cross-section)
- CLs corresponding to 68% is the contour around the best fit values (cross)
14TEV PROJECTIONS

• Based on SNOWMASS studies:
 • Extrapolate from current dataset to 300/fb (3000/fb) at 14TeV with the present level of detector performance
 • 2 Scenarios for projected uncertainties:
 • SCENARIO 1: all systematic uncertainties are left unchanged
 • SCENARIO 2: Theoretical uncertainties scale by 1/2 and other systematic uncertainties scale by 1/sqrt(Luminosity) (more optimistic scenario)
Higgs Doublets

- In two Higgs Doublet models the yukawa couplings of fermions to neutral Higgs can be substantially modified
 - MSSM check u,d coupling ratio

- Also in more general scenarios leptons can virtually decouple from the Higgs so test lepton/quark coupling ratio
 - one is within the 68% CL for both

Wednesday, August 14, 2013
8.4 Results

Figure 7: The SM extracted signal yield as a function of $|\cos(\theta^*)|$ for the $+m$ expectation (red line), the $+m$ expectation with gluon/fusion production only (blue line), the $+m$ expectation with quark/antiquark annihilation production only (green line), the $+m$ expectation with half gg, half qq production (magenta line) and the observation (black points).

Table 5: The χ^2 compatibility of the $+m$ and $-m$ models with the observation.

- χ^2 vs $+m$ signal plus background hypothesis with $68%$ gg
- χ^2 vs $+m$ signal plus background hypothesis with $68%$ qq
- χ^2 vs $+m$ signal plus background hypothesis with $68%$ gg, $50%$ qq

The separation between the two models and the data is extracted using the test statistic defined as twice the negative ratio of the likelihoods for the $+m$ signal plus background hypothesis and the $-m$ signal plus background hypothesis when performing a simultaneous fit of all twenty event classes together.

The distribution of this test statistic is shown in Fig. 8 for pseudoexperiments generated with an overall signal yield which is extracted from a fit to the data for the $+m$ hypothesis (orange) and the $-m$ hypothesis (blue) for gluon/fusion production only (left) and quark/antiquark annihilation production only (right). The observed value is shown as the red arrow. The CL S of the observation for the gluon/fusion only spin/¯ production is 6%-96% whilst for the quark/antiquark production it is 6%-96%. Consequently, neither of these spin/¯ models can be excluded.

The previous two tests are both performed assuming that the $-m$ state is produced entirely by either gluon/fusion or quark/antiquark annihilation. A further three points, with mixtures of gg and $q\bar{q}$ spin/¯ production, have been tested such that the overall yield of the $-m$ signal is...
Agreement at low statistics is fair:

\[\chi^2/\text{ndof} \quad p\text{-value} \]

<table>
<thead>
<tr>
<th>\chi^2/\text{ndof}</th>
<th>p\text{-value}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9/8</td>
<td>0.55</td>
</tr>
<tr>
<td>5.3/5</td>
<td>0.38</td>
</tr>
<tr>
<td>7.9/10</td>
<td>0.64</td>
</tr>
</tbody>
</table>

\[\chi^2/\text{ndof} \quad p\text{-value} \]

<table>
<thead>
<tr>
<th>\chi^2/\text{ndof}</th>
<th>p\text{-value}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6/4</td>
<td>0.33</td>
</tr>
<tr>
<td>4.6/4</td>
<td>0.33</td>
</tr>
</tbody>
</table>