Latest results on b-physics from the ATLAS and CMS experiments

E. Pasqualucci (INFN Roma) On behalf of the ATLAS and CMS Collaborations

Latest ATLAS and CMS results

- Rare and semi-rare B⁰_(s) decays
 - ATLAS and CMS
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow K^* \mu^+ \mu^-$
- Simmetry violation
 - New measurements from ATLAS:
 - Parity violation in $\Lambda_b \rightarrow \Lambda^0 J/\psi$ decay
 - CP violating parameters in $B_s \rightarrow J/\psi \phi$ (tagged)
- Quarkonia
 - Y(nS) cross section
 - ATLAS and CMS
 - Y and ψ polarization
 - CMS
 - Search for exotic quarkonium states (in the Appendix)
 - CMS
 - Associated W^{\pm} + prompt J/ψ production (in the Appendix)
 - ATLAS

Rare decays: $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*}\mu^{+}\mu^{-}$

- Motivation
 - Flavor changing neutral current
 - Forbidden at tree level
 - Sensitive to new physics
 - Precise SM predictions
 - $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.57 \pm 0.30) \times 10|^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$
 - Exclusive processes
 - Experimentally accessible
- Measurements:
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$
 - Branching ratio
 - $B^0 \rightarrow K^* \mu^+ \mu^- (B.R. = (1.06 \pm 0.1) \times 10^{-6})$
 - Forward-backward asymmetry of muons
 - Longitudinal polarization of K*(892)

 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

- Data set
 - 2011 data, 4.9 fb⁻¹ @ 7 TeV (ATLAS)
 - Upper limit to $B_s^0 \rightarrow \mu^+ \mu^-$
 - 2011 and 2012 data (CMS, 2011 data re-blinded)
 - 5 fb⁻¹ @ 7 TeV + 20 fb⁻¹ @ 8 TeV
 - Average pileup ≈ 9 and ≈ 21
 - Measurement of $B^0_{s} \rightarrow \mu^+ \mu^-$ and limit to $B^0 \rightarrow \mu^+ \mu^-$
- Methodology
 - Measurement relative to normalization channel
 - $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$
 - (Nearly) identical data selection
 - Reduce systematic uncertainties

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \frac{n_{B_{s}^{0}}^{\text{obs}}}{\varepsilon_{B_{s}^{0}} N_{B_{s}^{0}}} = \frac{n_{B_{s}^{0}}^{\text{obs}}}{\varepsilon_{B_{s}^{0}} \mathcal{L} \sigma(pp \to B_{s}^{0})} \qquad \text{LHCb} \quad \text{Phys. Rev. Lett. 110 (2013)}$$

$$= \frac{n_{B_{s}^{0}}^{\text{obs}}}{N(B^{\pm} \to J/\psi K^{\pm})} \boxed{\frac{A_{B^{\pm}}}{A_{B_{s}^{0}}} \frac{\varepsilon_{B^{\pm}}^{ana}}{\varepsilon_{B_{s}^{0}}^{ana}} \frac{\varepsilon_{B^{\pm}}^{\mu}}{\varepsilon_{B_{s}^{0}}^{\mu}} \frac{\varepsilon_{B^{\pm}}^{trig}}{\varepsilon_{B_{s}^{0}}^{\mu}} \frac{f_{u}}{\varepsilon_{B_{s}^{0}}^{\mu}}}{B_{s}^{0}} \mathcal{B}(B^{+} \to J/\psi [\mu^{+}\mu^{-}]K)}$$

$$R_{A\varepsilon} \text{ (from MC)} \qquad 4$$

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ results

BF(B°-

- Analysis via BDT
- ATLAS
 - 6 events after un-blinding $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 1.5 \times 10^{-8} (95\% \text{ C.L.})$
- CMS
 - From the BDT categorized analysis $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$
 - $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.5^{+2.1}_{-1.8}) \times 10^{-10}$
 - Significance
 - $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$: 4.3 σ
 - $B^0 \rightarrow \mu^+ \mu^-: 2.0 \sigma$
 - Upper limit on $B^0 \rightarrow \mu^+\mu^ \mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 1.1 \times 10^{-9} 95\% CL_{0.8}$ - Comparable to LHCb results ArXiv:1307.5024v1

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Full 2011 data set
 - Both experiments
- Process described by 4 kinematic variables
 - q^2
 - 3 angles (ϕ , $\theta_{\rm K}$, $\theta_{\rm L}$)
- A_{FB} and F_L studied in bins of q^2 ($M_{\mu\mu}$)

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• Differential decay rate

$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d} \cos \theta_L} = \frac{3}{4} F_L(q^2) \left(1 - \cos^2 \theta_L\right) + \frac{3}{8} \left(1 - F_L(q^2)\right) \left(1 + \cos^2 \theta_L\right) + A_{FB}(q^2) \cos \theta_L$$
$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d} \cos \theta_K} = \frac{3}{2} F_L(q^2) \cos^2 \theta_K + \frac{3}{4} \left(1 - F_L(q^2)\right) \left(1 - \cos^2 \theta_K\right).$$
$$\text{p.d.f.}(m, \cos \theta_K, \cos \theta_l) = Y_S S(m) \cdot S(\cos \theta_K, \cos \theta_l) \cdot \epsilon(\cos \theta_K, \cos \theta_l)$$

 $(\cos \theta_K, \cos \theta_l) = I_S S(m) \cdot S(\cos \theta_K, \cos \theta_l) \cdot E(\cos \theta_K, \cos \theta_l) + Y_B^c B^c(m) \cdot B^c(\cos \theta_K) \cdot B^c(\cos \theta_l) + Y_B^p B^p(m) \cdot B^p(\cos \theta_K) \cdot B^p(\cos \theta_l).$

- Uncertainties
 - Statistically dominated
 - Larger uncertainties in ATLAS at low q^2
 - Due to HLT cuts
- Measurements consistent with SM
 - Analysis ongoing on 2012 data set

$\Lambda_{\rm b}$ properties

Amplitude	λ_{Λ}	$\lambda_{J/\psi}$
a ₊	+1⁄2	0
a_	-1/2	0
b,	-1/2	-1
b_	+1/2	+1

- Use decay $\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)$ to measure:
 - Λ_b mass and lifetime $\frac{Phys. Rev. D87 (2013) (ATLAS)}{arXiv:1304.7495 (CMS)}$
 - Parity violating asymmetry parameter α_b (ATLAS)
 - CMS measured Phys. Lett. B714 (2012)
 - Differential Λ_b production cross section and $\sigma(\overline{\Lambda_b}) / \sigma(\Lambda_b)$ (1.9 fb-1)
- 2011 data set (7 TeV, 4.6 fb⁻¹) used
- Decay described by 4 helicity amplitudes
 - $|a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2} = 1$
 - $\alpha_{\rm b} = |a_+|^2 |a_-|^2 + |b_+|^2 |b_-|^2$
- Full angular PDF

W(
$$\vec{\Omega}, \vec{A}, \mathbf{P}$$
) = $\frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P\alpha_{\Lambda}) F_i(\vec{\Omega})$

J/ψ helicity frame

$\alpha_{\rm h}$ measurement

- Main results:
 - $m_{J/\psi\Lambda^0(\overline{\Lambda}^0)}\,[\text{MeV}]$ $-\Lambda^0$ and J/ ψ highly polarized in the direction of their momenta
 - Large $|a_{\downarrow}|$ and $|b_{\downarrow}| \rightarrow$ negative-helicity states for Λ^0 preferred
 - $\alpha_{\rm b}$ value consistent with LHCb: 0.05 ± 0.17 (stat.) ± 0.07 (syst.)
 - Intermediate between pQCD and HQET predictions: Phys. Lett. B724 (2013)
 - ~2.5 σ w.r.t. pQCD –(0.14 ~ 0.18) Chou et al., Phys. Rev. D65 (2002)
 - ~2.9 σ w.r.t. HQET (0.78)

Leitner et al., Nucl. Phys. A755 (2005)

Ajaltouni et al., Phys. Lett. B614 (2005)

$B_s \rightarrow J/\psi \phi$

- New ATLAS measurement Updates JHEP 1212 (2012)
 - Full 2011 data set
- CP violation parameter
 - ϕ_s
 - Phase difference between $B_s \overline{B}_s$ mixing amplitude and b $\rightarrow c\overline{c}s$ decay amplitude
 - Directly connected to CKM matrix elements

-
$$\phi_{s} \simeq -2 \beta_{s}$$
; $\beta_{s} = \arg \left[-(V_{ts}V_{tb}^{*})/(V_{cs}V_{cb}^{*})\right]$

-
$$\phi_s \simeq -2 \beta_s = -0.0368 \pm 0.0018$$
 (SM)

-
$$\Delta\Gamma_{\rm s}$$

- $(\Gamma_L \Gamma_H)$ of B_L and B_H
- Flavor tagging used to distinguish initial B_s and \overline{B}_s states
- CP states separated statistically through
 - Decay time-dependence $\tau = \frac{L_{xy} M_{B_s}}{p_{t_p}}$
- Angular correlations amongst final state particles

$B_s \rightarrow J/\psi \phi$

- \sim 22000 candidate B_s selected
- Uncertainty improved by 40%
 with respect to untagged analysis
- Uncertainty statistically dominated
 - 2012 data analysis ongoing

Quarkonia

- Motivations
 - Production mechanism not well understood
 - Inconsistencies between data and predictions on production and polarization
 - Input by production and polarization measurements, double quarkonia associated production
 - Theory and measurements made complex by feed-down
 - Indirect measurement : ratios as function of kinematic variables
- Recent measurements
 - ATLAS measurements
 - $d\sigma/dp_T$ for Y(nS) up to 70 GeV (1.8 fb⁻¹ @ 7 TeV) Phys. Rev. D87, 052004 (2013)
 - Associated W^{\pm} and J/ψ production (2011 data set)
 - CMS measurements (full 2011 data set)
 - $d\sigma/dp_T$ for Y(nS) up to 100 GeV
 - Prompt quarkonium polarization
 - Search for new exotic bottomonium states

Y(nS) production

• Differential cross section for a given |y| interval

 $\frac{d\sigma(pp \to \Upsilon(nS))}{dp_T} \times \mathcal{B}(\Upsilon(nS) \to \mu^+ \mu^-) = \frac{N_{\Upsilon(nS)}^{fit}(p_T)}{L_{int} \cdot \Delta p_T \cdot \varepsilon(p_T) \cdot \mathcal{A}(p_T)}$

Depends on spin alignment, i.e. angular distribution of muons. Averaged in the measurement

- Yield
 - Obtained by re-fit of the $M_{\mu\mu}$ plot in a given (|y|, p_T) bin

Y(nS) production

Similar behavior for all three states
 – Change of slope for p_T > 20 GeV

Y(nS) production ratios

- Common features
 - Almost flat on |y|
 - Change of slope
 - $p_T > 20-24 \text{ GeV}$
 - Change in production mechanism?

Quarkonium polarization (CMS)

- S-wave quarkonia @ high p_T
 - Predicted transversely polarized
- Studied through the angular distribution of $\boldsymbol{\mu}$ from decay
 - In 3 polarization frames

$$W(\cos\vartheta,\varphi|\vec{\lambda}) = \frac{3/(4\pi)}{(3+\lambda_{\vartheta})}(1+\lambda_{\vartheta}\cos^2\vartheta+\lambda_{\varphi}\sin^2\vartheta\cos2\varphi+\lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi)$$

 $ilde{\lambda} = (\lambda_artheta + 3\lambda_arphi)/(1-\lambda_arphi)$ Frame invariant, characterizes the shape of the distribution

- Measurement as a function of p_T and |y|
 - Y(nS): 10 GeV < p_T < 50 GeV (5 bins), |y| < 1.2 (2 bins) PLR 110, 081802 (2013)
 - J/ψ : 14 GeV < p_T < 70 GeV (10 bins), |y| < 1.2 (2 bins)
 - $\psi(2S)$: 14 GeV < p_T < 50 GeV (4 bins), |y| < 1.5 (3 bins)

ψ (nS) comparison to NRQCD

17

Summary

- New interesting results from ATLAS and CMS on
 - Rare B decays
 - $B_s \rightarrow \mu^+ \mu^-$ measurement
 - − ATLAS analyzed 2011 data \rightarrow new upper limit
 - CMS used the full 2011 and 2012 data set \rightarrow measurement
 - New results on $B^0 \rightarrow K^* \mu^+ \mu^-$ from ATLAS (2011 data set)
 - Results are consistent with SM
 - Parity violation in Λ_b decay
 - Results are intermediate between model predictions (ATLAS)
 - CP parity violation parameters in $B_s \rightarrow J/\psi \phi$
 - Results in agreement with the standard model
 - Quarkonia
 - Differential cross section for Y(nS) production
 - Prompt quarkonium polarization
 - $-\psi(2s)$ exhibits no sign of strong polarization (CMS)
 - Associated W^{\pm} and J/ψ production
 - First ATLAS measurement, shows discrepancies with predictions
 - Search for new exotic X_b bottomonium state
 - No evidence for a new X_b state up to now (CMS, 2012 data set)
- Further measurements expected with 2012 full data set

Appendix

W^{\pm} + prompt J/ ψ measurement

- Search for associated production of
 - W ($\rightarrow \mu \nu$) and prompt J/ ψ ($\mu \mu$)
- Probes quarkonium production mechanism
- Sensitive to multiple parton interactions
- ATLAS, 4.6 fb⁻¹ @ 7 TeV (first observation)
- Event selection
 - Events triggered on W muon
 - W identified via μ + missing transverse energy
 - Prompt J/ ψ via mass and pseudo-proper time
- $\sim 29 \text{ W}^{\pm}$ + prompt J/ ψ events observed
 - Background-only hypothesis rejected at 5.3 σ level

W[±] + prompt J/ ψ measurement

- Double parton scattering contribution
 - Probability parametrized as $P_{J/\psi|W} = \sigma_{J/\psi}/\sigma_{eff}$ From ATLAS W + 2 jets

From ATLAS prompt J/ψ

- Total yield estimated 10.8 ± 4.2 events (~40%)
- DPS contribution expected flat in $\Delta \varphi$ between W and J/ ψ
 - Under the assumption of independent interactions

Exotic quarkonium states

- The discovery of the first exotic charmonium state X(3872) in 2003 has renewed the interests in the hadron spectroscopy
- Several new states found, however:
 - Unconventional states are mostly seen in charmonium system
 - Few candidates in bottom/strange sector
 - Theoretical picture unclear
 - What is the nature of these states?
 - More experimental inputs needed
 - Property measurements
 - Extended searches
- Large statistics provided by LHC
 - > 12000 X(3872) candidates seen by CMS

Search for X_b

- Search for X_b based on full CMS 2012 data
 - 20.7 fb⁻¹ @ 8 TeV
 - Look for narrow resonance in $Y(1S)\pi^+\pi^-$ final state
 - Presumably between 10 to 11 GeV
 - Around B*B threshold
 - Candidates from Belle
 - $Y_b (1086) \rightarrow Y \pi^+ \pi^-$
 - Z_b (10610), Z_b (10650) $\rightarrow Y\pi^{\pm}$

Search for X_b

- $Y(2s) \rightarrow Y(1s)\pi\pi$ as reference channel
- No evidence for a X_b state
 - B.R. upper limit set as a function of mass

Backup

 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

- Data set
 - 2011 data, 4.9 fb⁻¹ @ 7 TeV (ATLAS)
 - Upper limit to $B_s^0 \rightarrow \mu^+ \mu^-$
 - 2011 and 2012 data (CMS, 2011 data re-blinded)
 - 5 fb⁻¹ @ 7 TeV + 20 fb⁻¹ @ 8 TeV
 - Average pileup ≈ 9 and ≈ 21
 - Measurement of $B^0_{s} \rightarrow \mu^+ \mu^-$ and limit to $B^0 \rightarrow \mu^+ \mu^-$
- Methodology
 - Measurement relative to normalization channel
 - $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$
 - (Nearly) identical data selection
 - Reduce systematic uncertainties

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \frac{n_{B_{s}^{0}}^{\text{obs}}}{\varepsilon_{B_{s}^{0}} N_{B_{s}^{0}}} = \frac{n_{B_{s}^{0}}^{\text{obs}}}{\varepsilon_{B_{s}^{0}} \mathcal{L} \sigma(pp \to B_{s}^{0})} \qquad \text{LHCb} \quad \text{Phys. Rev. Lett. 110 (2013)}$$

$$= \frac{n_{B_{s}^{0}}^{\text{obs}}}{N(B^{\pm} \to J/\psi K^{\pm})} \boxed{\frac{A_{B^{\pm}}}{A_{B_{s}^{0}}} \frac{\varepsilon_{B^{\pm}}^{ana}}{\varepsilon_{B_{s}^{0}}^{ana}} \frac{\varepsilon_{B^{\pm}}^{\mu}}{\varepsilon_{B_{s}^{0}}^{\mu}} \frac{\varepsilon_{B^{\pm}}^{trig}}{\varepsilon_{B_{s}^{0}}^{\mu}} \frac{f_{u}}{f_{s}}} \mathcal{B}(B^{+} \to J/\psi [\mu^{+}\mu^{-}]K)}$$

$$R_{A\varepsilon} \text{ (from MC)} \qquad 26$$

 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

- Data selection
 - Trigger
 - 2 muons used for level 1 trigger
 - HLT slightly different
 - Two muons from common vertex with opposite charge
 - Loose cut on invariant mass for B and J/ψ
 - Data analysis
 - Blind analysis after simple pre-selection
 - Control sample used to validate MC simulation
 - $B^0_{s} \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$
 - Use of Multi-Variate Analysis (BDT) to
 - Refine muon identification (CMS)
 - » Muon misidentification probability $\sim 10^{-3}$ for p, π and K
 - Distinguish signal from combinatorial background
 - » Trained on MC simulated signal and sidebands events for the background

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ results

2×10[®] CMS

1.4

1.2

0.8

0.6

0.4

2

- Analysis via BDT
 - Independent from pileup
- ATLAS
 - 6 events after un-blinding
 - 6.75 estimated background $\mathcal{B}(B^0_* \to \mu^+ \mu^-) < 1.5 \times 10^{-8} (95\% \text{ C.L.})$
- CMS
 - From the BDT categorized approach $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.5^{+2.1}_{-1.8}) \times 10^{-10}$
 - Significance
 - $B^0 \rightarrow \mu^+ \mu^-$: 4.3 σ
 - $B^0 \rightarrow \mu^+ \mu^-$: 2.0 σ
 - Upper limit on $B^0 \rightarrow \mu^+ \mu^-$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.1 \times 10^{-9} 95\% \text{CL}^{\circ 2}$

 Comparable to LHCb results ArXiv:1307.5024v1

 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

- Background sources
 - Combinatorial
 - Semi-leptonic B decays
 - Peaking background
- BDT method
 - Optimized cut on discriminant for upper limits
 - Categorized analysis for measurement
 - Pileup independence checked
- Likelihood fit to extract the yields
- Main uncertainties from:
 - $R_{A\epsilon}$
 - f_s/f_u
 - BR of reference channel
 - μ misidentification
 - PDF shapes

$B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$ (ATLAS)

R_{Aε} – Evaluated from MC

 $R_{A\epsilon} = 0.267 \pm 1.8\%$ (stat.) $\pm 6.9\%$ (syst.)

- Yield for reference channel
 - Even-# events

 $N_{J/\psi K^{\pm}} = 15\ 214\ \text{even-no. events } \pm 1.1\%(\text{stat.}) \pm 2.4\%(\text{syst.})$

- Un-blinded mass region
 - 6 event observed after un-blinding
 - Estimate background from SB: 6.75

CMS 1D approach

CMS categorized approach

Highest and 2nd highest S/B categories for (barrel, endcap) x (2011, 2012)

B-+∎'s

5.6

m_{ap} (GeV)

- 16 M

eaking bkp

emileptonic bkg

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Dependence of decay rates from kinematical variables
 - Keeps into account possible contribution from spin-less $K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

$$egin{aligned} &rac{1}{\Gamma}rac{\mathrm{d}^3\Gamma}{\mathrm{d}\cos heta_K\mathrm{d}\cos heta_l\mathrm{d}q^2} &= rac{9}{16}\left\{\left[rac{2}{3}F_S+rac{4}{3}A_S\cos heta_K
ight]\left(1-\cos^2 heta_l
ight)
ight. \ &+\left(1-F_S
ight)\left[2F_L\cos^2 heta_K\left(1-\cos^2 heta_l
ight)
ight. \ &+rac{1}{2}\left(1-F_L
ight)\left(1-\cos^2 heta_K
ight)\left(1+\cos^2 heta_l
ight)
ight. \ &+rac{4}{3}A_{FB}\left(1-\cos^2 heta_K
ight)\cos heta_l
ight]
ight\}. \end{aligned}$$

• PDF for each q² bin

p.d.f.
$$(m, \cos \theta_K, \cos \theta_l) = Y_S S(m) \cdot S(\cos \theta_K, \cos \theta_l) \cdot \epsilon(\cos \theta_K, \cos \theta_l)$$

+ $Y_B^c B^c(m) \cdot B^c(\cos \theta_K) \cdot B^c(\cos \theta_l)$
+ $Y_B^p B^p(m) \cdot B^p(\cos \theta_K) \cdot B^p(\cos \theta_l).$

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Invariant mass distributions for each q² bin (CMS)

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

• F_L and A_{FB} (CMS)

• F_L and A_{FB} (ATLAS)

$\Lambda_{\rm b}$ data selection (ATLAS)

- J/ψ di-muon trigger
 - Di-muon trigger
 - Threshold on each μ is $p_T = 4 \text{ GeV}$
 - Minimum p_T in the sample is 2.5 GeV
 - Opposite charge and 2.5 GeV < $M_{\mu\mu}$ < 4.3 GeV
- Signal selection
 - MS used for trigger, ID used for p_T
 - $2.8 \text{ GeV} < M_{\mu\mu} < 3.4 \text{ GeV}$
 - $1.08 \text{ GeV} < \dot{M}_{p\pi} < 1.15 \text{ GeV}$
 - Both Λ and $\overline{\Lambda}$ considered
- Reconstruction
 - Global re-fit of tracks
 - Mass constraints for decay products
 - Λ^0 decay length > 10 mm, p_T > 3.5 GeV
 - $\Lambda_{\rm b} \tau > 0.35 \text{ ps} (\text{average } 1.4 \text{ ps})$
 - Re-fit as a B_d and (if compatible) compare χ^2 probability
 - Mass of Λ_b between 5560 and 5680 MeV

$\Lambda_{\rm b}$ mass and lifetime

• Control signal

 $\tau_{Bd} = 1.509 \pm 0.012(stat) \pm 0.018(syst) \text{ ps}$ $m_{Bd} = 5279.6 \pm 0.2(stat) \pm 1.0(syst) \text{ MeV}$

– Consistent with PDG:

 τ^{PDG} = 1.519 ± 0.007 ps m^{PDG} = 5279.50 ± 0.30 MeV

• Results on $\Lambda_{\rm b}$

 $\tau_{\Lambda b} = 1.449 \pm 0.036(\text{stat}) \pm 0.017(\text{syst}) \text{ ps}$ $m_{\Lambda b} = 5619.7 \pm 0.7(\text{stat}) \pm 1.1(\text{syst}) \text{ MeV}$

 $R = \tau_{Ab} / \tau_{Bd} = 0.960 \pm 0.025 (stat) \pm 0.016 (syst)$

$\alpha_{\rm b}$ measurement

- Decay described by 4 helicity amplitudes
 - $|a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2} = 1$
 - $\alpha_{\rm b} = |a_{\rm +}|^2 |a_{\rm -}|^2 + |b_{\rm +}|^2 |b_{\rm -}|^2$
- Full angular PDF

W(
$$\vec{\Omega}, \vec{A}, P$$
) = $\frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P\alpha_{\Lambda}) F_i(\vec{\Omega})$

- $F_{1i}(\vec{A})$: bilinear combination of helicity amplitudes $\vec{A} \equiv (a_+, a_-, b_+, b_-)$ $a_+ \equiv |a_+| e^{i\rho_+}, a_- \equiv |a_-| e^{i\rho_-},$ $b_+ \equiv |b_+| e^{i\omega_+}, b_- \equiv |b_-| e^{i\omega_-}$
- $F_{2i}(P,\alpha_{\Lambda})$ has values $P\alpha_{\Lambda}$, P, α_{Λ} or 1
 - $\alpha_{\Lambda} = 0.642 \pm 0.013$ for $\Lambda^0 \rightarrow p\pi^-$
 - Exploit ATLAS symmetry in $\eta \rightarrow$ Polarization = 0
 - $F_i(\vec{\Omega})$: orthogonal functions of decay angles
- Only 5 independent parameters
- χ^2 fit to measured <F_i>

 $<\mathbf{F}_{i}>^{\text{expected}} \equiv \sum f_{j}(\vec{A})C_{ij}$

$$\chi^{2} = \sum_{i=1}^{5} \sum_{j=1}^{5} (\langle F_{i} \rangle^{\text{expected}} - \langle F_{i} \rangle) V_{ij}^{-1} (\langle F_{j} \rangle^{\text{expected}} - \langle F_{j} \rangle)$$

Detector effects, determined by MC samples

Model, defined in terms of free parameters

Amplitude	λ_{Λ}	$\lambda_{J/\psi}$
a ₊	+1/2	0
a_	-1/2	0
b ₊	-1/2	-1
b_	+1/2	+1

$\Lambda_{\rm b}$ asimmetry measurement

• Full angular PDF

W(
$$\vec{\Omega}, \vec{A}, \mathbf{P}$$
) = $\frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P\alpha_{\Lambda}) F_i(\vec{\Omega})$

i	f_{1i}	f_{2i}	F _i
0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
1	$a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+b_{+}b_{+}^{*}-b_{-}b_{-}^{*}$	Р	$\cos heta$
2	$a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-b_{+}b_{+}^{*}+b_{-}b_{-}^{*}$	α_{A}	$\cos \theta_1$
3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\cos\theta\cos\theta_1$
4	$-a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + \frac{1}{2}b_{+}b_{+}^{*} + \frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$
5	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}-\frac{1}{2}b_{-}b_{-}^{*}$	Р	$\frac{1}{2}\left(3\cos^2 heta_2-1 ight)\cos heta$
6	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta_1$
7	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}-\frac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta\cos\theta_1$
8	$-3Re(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos\varphi_1$
9	$3Im(a_+a^*)$	$P \alpha_{\Lambda}$	$\sin heta\sin heta_1\sin^2 heta_2\sinarphi_1$
10	$-\frac{3}{2}Re(b_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \cos(arphi_1 + 2 arphi_2)$
11	$\frac{3}{2}Im(b_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \sin (arphi_1 + 2 arphi_2)$
12	$-\frac{3}{\sqrt{2}}Re(b_{a_{+}^{*}}+a_{b_{+}^{*}})$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\varphi_2$
13	$\frac{3}{\sqrt{2}}$ Im $(b_a^* + a_b^*)$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\varphi_2$
14	$-\frac{3}{\sqrt{2}}Re(b_a^* + a_+b_+^*)$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\varphi_1+\varphi_2)$
15	$\frac{3}{\sqrt{2}}Im(b_a^* + a_+b_+^*)$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\varphi_1+\varphi_2)$
16	$\frac{3}{\sqrt{2}}Re(a_b_+^* - b_a_+^*)$	Р	$\sin\theta\sin\theta_2\cos\theta_2\cos\varphi_2$
17	$-\frac{\sqrt{3}}{\sqrt{2}}Im(a_b_+^*-b_a_+^*)$	Р	$\sin\theta\sin\theta_2\cos\theta_2\sin\varphi_2$
18	$\frac{3}{\sqrt{2}}Re(b_a_{-}^* - a_{+}b_{+}^*)$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\cos(\varphi_1+\varphi_2)$
19	$-\frac{3}{\sqrt{2}}Im(b_a^* - a_+b_+^*)$	$lpha_{A}$	$\sin\theta_1 \sin\theta_2 \cos\theta_2 \sin(\varphi_1 + \varphi_2)$

$\alpha_{\rm b}$ measurement

- Polarization P=0 due to:
 - Symmetry of initial state
 - ATLAS symmetry in $\boldsymbol{\eta}$
 - Coefficients reduced to 6

• Use of the following 5 parameters to define the model:

$$\alpha_{b} = |a_{+}|^{2} - |a_{-}|^{2} + |b_{+}|^{2} - |b_{-}|^{2}$$

$$k_{0} = \frac{|a_{+}|}{\sqrt{|a_{-}|^{2} + |b_{+}|^{2}}}, \quad k_{1} = \frac{|b_{-}|}{\sqrt{|a_{-}|^{2} + |b_{-}|^{2}}}$$

$$\Delta_{+} = \rho_{+} - \omega_{+}, \quad \Delta_{-} = \rho_{-} - \omega_{-}$$

$B_s \rightarrow J/\psi \phi$

Tagging methods, calibrated using $B^{\pm} \rightarrow J/\psi K^{\pm}$ decays Determine probability that signal contains \overline{b}

- Muon tagging
 - From semi-leptonic decays
 - Diluted by
 - B_s oscillations
 - $b \rightarrow c \rightarrow u$ cascade decay

- Jet tagging
 - B-tagged jet required

$B_s \rightarrow J/\psi \phi$

• Differential decay rate

$$\frac{d^4\Gamma}{dt\,d\Omega} = \sum_{k=1}^{10} \mathscr{O}^{(k)}(t) g^{(k)}(\theta_T, \psi_T, \phi_T)$$

- Tag information used
 - Extra PDF terms to account for the background
 - Background tag probability modeled on the sidebands
 - 25 parameters, 9 of them physical

Quarkonium production

- No theory explains at the same time
 - Production ($d\sigma/dp_T$)
 - Polarization
 - Previous measurements: only one polarization parameter (out of three)

Uncertainties on Y(nS) production

• ATLAS

Source	Relative uncertainty $[Y(1S)/Y(2S)/Y(3S)]$ [%] $ y^{\mu\mu} < 1.2$ $1.2 \le y^{\mu\mu} < 2.25$		
Statistical uncertainty	1.5-10/2-10/3-10	2-15/2.5-12/4-18	
Fit model	0.3-2/0.3-10/0.3-15	0.4-10/0.3-5.0/0.2-12	
Luminosity	3.9	3.9	
Trigger efficiency	2.0-3.0/1.0-2.0/1.0-2.0	2.0-3.0/2.0-4.0/2.0-7.0	
Muon reconstruction efficiency	0.7-2.0/0.4-1.2/0.4-1.2	0.5-5.0/0.4-3.0/0.4-3.0	
Acceptance corrections	0.7-1.5	0.7-1.5	
Track reconstruction efficiency	1.0	1.0	

Quarkonia polarization

• Polarization measured through the average angular decay distribution – for vector particles:

 $W(\cos\vartheta,\varphi|\vec{\lambda}) = \frac{3/(4\pi)}{(3+\lambda_{\vartheta})}(1+\lambda_{\vartheta}\cos^2\vartheta+\lambda_{\varphi}\sin^2\vartheta\cos2\varphi+\lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi)$ $\tilde{\lambda} = (\lambda_{\vartheta}+3\lambda_{\varphi})/(1-\lambda_{\varphi}) \quad \text{(frame-invariant)}$

- Angular decay distribution measure with respect to 3 reference frames:
 - Center-of mass helicity frame HX (polar axis ≈ direction of quarkonium momentum)
 - Collins-Soper CS ($z_{CS} \approx$ direction of relative velocity of colliding particles)
 - Perpendicular helicity PX ($z_{PX} \perp z_{CS}$)
- Distribution shape is characterized by the frame invariant parameter $\tilde{\lambda}$

Polarization parameters

Quarkonia polarization

• Two extreme angular decay distributions

- The full angular distribution has to be measured. Otherwise two very different physical cases cannot be distinguished.
- The shape of the distribution is invariant and can be characterized by the frame invariant parameter $\tilde{\lambda} = (\lambda_{\vartheta} + 3\lambda_{\varphi})/(1 \lambda_{\varphi})$

Y(nS) polarization in the HX Frame, |y| < 0.6

Y(nS) comparison with NRQCD

- Calculation accounts for feed-down contributions to Y(1S) and Y(2S)
- Prediction for Y(3S) may change
 - $\ \ Feed-down \ from \ \chi_b(3P) \ to \ be \ included$

J/ψ polarization and shape invariance

50

W[±] + prompt J/ ψ measurement

• Background sources

- − t→W[±]b, where b→J/ψ X
 - Expected yield < 0.28 @ 95% CL
- W[±]b others than t decay
 - Ratio to W± production is consistent with ratio W± + non-prompt J/ ψ to W±
- − $Z \rightarrow \mu^+ \mu^-$ vetoed by removing $m_{\mu\mu} = m_Z \pm 10$ GeV
- Multi-jet production
 - Shape evaluated looking at non-isolated muons
 - Fit on W transverse mass
- Pileup
 - Estimated yield 1.8 ± 0.2
- Double-parton scattering
 - Evaluated via $P_{J/\psi|W} = \sigma_{J/\psi}/\sigma_{eff}$

W^{\pm} + prompt J/ ψ measurement

Yields from two-dimensional fit				
Process	Barrel	Endcap	Total	
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	$29.2_{-6.5}^{+7.5}$	
Non-prompt J/ψ	$27.9^{+6.5}_{-5.8}$	$13.9^{+5.3}_{-4.5}$	$41.8_{-7.3}^{+8.4}$	
Prompt background	$20.4^{+5.9}_{-5.1}$	$18.8^{+6.3}_{-5.3}$	$39.2^{+8.6}_{-7.3}$	
Non-prompt background	$19.8\substack{+5.8\\-4.9}$	$19.2^{+6.1}_{-5.1}$	39.0 ^{+8.4} -7.1	
<i>p</i> -value	$1.5 imes 10^{-3}$	$1.4 imes 10^{-6}$	$4.4 imes 10^{-8}$	
Significance	3.0	4.7	5.3	

Source	Barrel	Endcap
J/ψ muon efficiency	$\approx 5\%$	$\approx 5\%$
W^{\pm} boson kinematics	2%	5%
Fit procedure	$^{+3}_{-2}\%$	$^{+2}_{-1}\%$
Choice of fit nuisance parameters	1%	1%
Choice of fit functional forms	4%	4%
Muon momentum scale	negligible	
J/ψ spin-alignment	$^{+36}_{-25}\%$	$^{+27}_{-13}\%$
Statistical	$^{+47}_{-40}\%$	$^{+30}_{-27}\%$

B⁺ production (ATLAS)

- 2.4 fb⁻¹, 7 TeV, 2011
- $d^2\sigma(pp \rightarrow B^+X)/dp_T dy$
 - Up to $p_T \sim 100 \text{ GeV}$
 - 4 rapidity regions, |y| < 2.25
 - via $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$
 - (B.R. = (6.03 +- 0.21) x 10⁻⁵)
- Event selection
 - Di-muon trigger
 - At least 2 μ with matching MS and ID tracks
 - $2.5 < m_{\mu\mu} < 4.3$ GeV (ID kinematics)
 - Reconstructed muons must match the trigger ones
- Background
 - $B^{\pm} \rightarrow J/\psi \ \pi^{\pm}$
 - $B^{\pm/0} \rightarrow J/\psi \ K^{\pm/0}$ and $B^{\pm/0} \rightarrow J/\psi \ K^{\pm}\pi^{\pm/0}$
 - Combinatorial background from J/ ψ plus a track

B+ production (ATLAS)

- Comparison with theory
 - NLO and FONLL

