Recent searches for supersymmetry at the LHC

Rencontres du Vietnam Aug 11-17, 2013 Quy Nhon, Vietnam

Christian Ohm on behalf of the ATLAS and CMS collaborations

CERN

Aug 14, 2013

イロト イヨト イヨト イヨト

A brief introduction to supersymmetry

What is it?

- Generalization of the SM where force and matter are described by the same equations!
- Introduces sfermions and gauginos ⇒ doubles SM particle content

(picture from Don Lincoln's video describing SUSY for the general public)

SUSY is attractive

- Only possible extension of the Poincaré algebra
- Alleviates hierarchy problem
- Allows for gauge coupling unification
- Can provide Dark Matter particle

but...

■ > 100 free parameters ⇒ wide range of possible experimental signatures!

So, SUSY is theoretically appealing, phenomenologically rich, and therefore experimentally challenging (to exclude)

Overview of SUSY searches with ATLAS and CMS

Selected sparticle mass limits from SUSY searches at the LHC

ATLAS (see summary page)

- Large fraction of experimental programs devoted to SUSY searches
- Limits summary: ~60 papers/notes
- Here four recent and diverse results
- See E. Halkiadakis' summary!

CMS Preliminary 00 1200 1400 1600 1800 Mass scales (GeVI Aug: 14, 2013 3 / 24

CMS (see summary page)

Natural SUSY and direct \tilde{t} pair production at the LHC

Experimental signature & motivation

Increasing luminosity \Rightarrow from broad and inclusive searches to dedicated ones targeting specific processes/scenarios, development fueled by "natural" SUSY:

t t ˜ /*δ* lightest squarks
 (*g̃* and 1st/2nd gen. *q̃* heavier)
 *˜ χ̃*⁰ and *˜ ˜* directly accessible

Experimental signature of direct top-squark pair production:

Direct \tilde{t} pair production in 1-lepton channel with CMS

Event selection and example signal region distributions (arXiv:1308.1586, submitted to EPJC)

Event selection

Pre-selection

- Single-lepton trigger
- Exactly one isolated lepton
 - $e: p_{\rm T} > 30 \text{ GeV}, |\eta| < 1.44$ • $\mu: p_{\rm T} > 25 \text{ GeV}, |\eta| < 2.1$
- Jets:
 - \geq 4 jets with $p_{\rm T}$ > 30 GeV and $|\eta|$ < 2.4
 - including at least one b-tagged
- $\bullet E_{\rm T}^{\rm miss} > 100 \,\, {\rm GeV}$

Signal regions

- $\bullet M_{\rm T} > 120 \,\, {\rm GeV}$
- Several regions defined using cuts on kinematic variables, or BDT discriminants

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Search for direct \tilde{t} pair production in 1-lepton channel

Exclusion limits (arXiv:1308.1586)

In both decay scenarios, up to $m_{\tilde{t}} \lesssim 650~{
m GeV}$ and $m_{\tilde{\chi}^0_1} \lesssim 250~{
m GeV}$ is excluded

Main results from BDT analysis, cut-based analysis with similar results also public

Similar ATLAS results in ATLAS-CONF-2013-037

C. Ohm (CERN)

Aug 14, 2013 6 / 24

SUSY in final states with at least three *b*-jets

Experimental signature & motivation

Final states with many third generation quarks can also be \tilde{g} -mediated:

 \tilde{g} -mediated \tilde{b} :

- other \tilde{q} heavier than $\tilde{g} \Rightarrow$ BR $(\tilde{g} \rightarrow \tilde{b}b) = 100\%$
- BR $(\tilde{b} \rightarrow b \tilde{\chi}^0) = 100\%$

 \tilde{g} -mediated \tilde{t} :

- other \tilde{q} heavier than $\tilde{g} \Rightarrow$ BR $(\tilde{g} \rightarrow \tilde{t}t) = 100\%$
- BR $(\tilde{t} \to b\tilde{\chi}^{\pm}) = 100\% \ (m_{\tilde{\chi}^{\pm}} = 2m_{\tilde{\chi}^{0}}), \text{ or }$ BR $(\tilde{t} \to t\tilde{\chi}^{0}) = 100\%$

"Gbb" ("Gtt"):

- BR $(\tilde{g} \rightarrow b\bar{b}\tilde{\chi}^0) = 100\%$, via virtual \tilde{b} (similar for Gtt)
- Yields signature with four b-quarks, two \$\tilde{\chi}^0\$ (+ leptons, additional jets)

SUSY in final states with at least three *b*-jets with ATLAS

Event selection and example signal region distributions (ATLAS-CONF-2013-061, June 25)

Event selection

- $E_{\rm T}^{\rm miss}$ -based trigger, offline $E_{\rm T}^{\rm miss} > 150~{\rm GeV}$
- $\label{eq:eq:constraint} \begin{array}{l} \bullet \geq 4 \text{ jets with } p_{\mathrm{T}} > 30 \ \mathrm{GeV},\\ & \text{including} \geq 3 \ b\text{-tagged}, \geq 1 \ \text{jet with}\\ & p_{\mathrm{T}} > 90 \ \mathrm{GeV} \end{array}$
- Two classes of signal regions:
 - 0-lepton: defined using $m_{\rm eff}^{\rm incl}$, $m_{\rm eff}^{\rm 4j}$, $\Delta \Phi_{\rm min}^{\rm 4j}$, $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}^{\rm 4j}}$

$m_{\rm eff}^{\rm incl}$ in 0ℓ

$$(m_{\rm eff}^{\rm incl} = \sum_{j} p_{\rm T} + E_{\rm T}^{\rm miss})$$

CMS results targeting similar scenarios in

1305.2390, PAS-SUS-13-008, , PAS-SUS-13-007, ...

C. Ohm (CERN)

Recent searches for supersymmetry at the LHC

Aug 14, 2013 8 / 24

SUSY in final states with at least three *b*-jets with ATLAS

Exclusion limits (ATLAS-CONF-2013-061):

K: *ğ*-mediated *b* (*ğ* → bb*X*⁰) *K*: *ğ*-mediated *t* (*ğ* → tbW**X*⁰) *K*: Gtt (*ğ* → tt*X*⁰, m_{*ā*} ≫ m_{*ā*})

CMS: 1305.2390, PAS-SUS-13-008, , PAS-SUS-13-007, ...

< ロ > < 同 > < 回 > < 回 >

C. Ohm (CERN)

Electroweak production of $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ and $\tilde{\ell}$ production Experimental signature

Direct production of "ewkinos" ($\tilde{\ell}, \tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$) - does not depend on $m_{\tilde{g}}$ and $m_{\tilde{q}}$

Many variations in signal models: handedness of leptons (coupling to ν̃), m_{ℓ̃}, lepton flavor assumptions ("democratic", τ-enriched or τ-dominated)

Final state: $\geq 2\ell + E_{\rm T}^{\rm miss}$ (same-sign and opposite-sign configurations)

Backgrounds: $t\bar{t}$, WZ, fake and non-prompt ℓ ($t\bar{t}$, Z+jets, WW+jets)

Search for electroweak $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ and $\tilde{\ell}$ production with CMS

Event pre-selection and outline of example signal regions (CMS-PAS-SUS-13-006, July 19)

Common event and object selection

- Di-lepton trigger
- Well-identified and isolated leptons
- Substantial $E_{\rm T}^{\rm miss}$
- b-jet veto

3-lepton search:

■ 3 leptons: e/μ with $p_{\rm T} > 10$ GeV, had. τ with $p_{\rm T} > 20$ GeV

4-lepton search:

- Leptons as above (at most one hadronic τ)
- Require one e^+e^- or $\mu^+\mu^-$ pair with $|m_{\ell\ell}-m_Z|<15~{\rm GeV}$

ATLAS: ATLAS-CONF-2013-049, ATLAS-CONF-2013-028, ATLAS-CONF-2013-035, ATLAS-CONF-2013-036

Two same-sign leptons

- Targets \$\tilde{\chi}^{\pm \tilde{\chi}^0}\$ production where one lepton is missed (compressed spectrum)
- \blacksquare SRs divided by $E_{\rm T}^{\rm miss}$, $n_{\rm jets}$
- Veto OSSF pairs with $|m_{\ell\ell} - m_Z| < 15 \text{ GeV}$ $(t\bar{t}Z \text{ and } WZ)$

 $\mathsf{OSSF}\ \mathsf{pair} + \mathsf{two}\ \mathsf{jets}$

■ Targets processes with on-shell $Z \rightarrow \ell \ell$ another W/Z decaying hadronically

 \Rightarrow >100 mutually exclusive signal regions!

<ロ> (日) (日) (日) (日) (日)

. . .

Search for electroweak $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ and $\tilde{\ell}$ production with CMS Example distributions in SR (CMS-PAS-SUS-13-006)

$M_{\rm CT\perp}$ in non-resonant 2ℓ (OSSF)

Search for electroweak $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$ and $\tilde{\ell}$ production with CMS Example exclusion limits (CMS-PAS-SUS-13-006)

- Results benefit greatly from combining several channels
- Both generic (left) and model-specific (right) limits

Compressed spectrum: nearly mass-degenerate $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$

Phenomenology

Motivation

- E.g. Anomaly-Mediated Supersymmetry Breaking (AMSB), hep-ph/9810442, hep-th/9810155
- \blacksquare Generally: models with Higgsino- or Wino-like $\tilde{\chi}^0_1/\tilde{\chi}^0_2$

Signature

- Typically: $m_{\tilde{\chi}^{\pm}} m_{\text{LSP}} \sim 160 \text{ MeV}$ $\Rightarrow c \tau_{\tilde{\chi}^{\pm}} \sim 10 \text{ cm}$, i.e. measurable in collider experiment!
- $\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}^{0} + \pi^{\pm}$, where $p_{\mathrm{T}}^{\pi^{\pm}} \sim 100 \text{ MeV}$
- Disappearing-track signature!
- Exploit QCD ISR jets for triggering

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Search for nearly mass-degenerate $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ with ATLAS

Event selection & disappearing-track reconstruction (ATLAS-CONF-2013-069, July 16)

Event selection

- Topological jet $+E_{T}^{miss}$ trigger
- $E_{\rm T}^{\rm miss} > 90 \ {\rm GeV}$ and ≥ 1 jet with $p_{\rm T} > 90 \ {\rm GeV}$
- Lepton (e/μ) veto $(W/Z+jets, t\bar{t})$

Backgrounds

Primarily W+ jets with naturally high $E_{\mathrm{T}}^{\mathrm{miss}}$

Selection of disappearing-track candidates

Extended track reconstruction for long-lived $\tilde{\chi}^\pm$

イロト イヨト イヨト イヨト

- Start from pixel-only tracks
- Good fit quality, no shared or missing hits
- Well-isolated
- $\bullet p_{\rm T} > 15 \ {
 m GeV}$

Search for nearly mass-degenerate $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ with ATLAS Example distributions (ATLAS-CONF-2013-069)

TRT hits for high- $p_{\rm T}$ isolated tracks

Disappearing-track candidate p_{T} spectra

Exclusions in $m_{\tilde{\chi}^{\pm}}$ - $\Delta m_{\tilde{\chi}^{\pm}}$ space

Search for nearly mass-degenerate $\tilde{\chi}^{\pm}$ and $\tilde{\chi}^{0}$ with ATLAS Exclusion limits (ATLAS-CONF-2013-069)

Exclusions in $m_{\tilde{\chi}^{\pm}}\text{-}\tau_{\tilde{\chi}^{\pm}}$ space

Excludes up to m_{\tilde{\chi}^{\pm}} \approx 500 GeV for 0.1 ns < \tau_{\tilde{\chi}^{\pm}} < 10 ns
 Limits from previous ATLAS analysis (4.7fb⁻¹ at 7 TeV) extended considerably

C. Ohm (CERN)

・ロト ・回ト ・ヨト ・ヨト

Summary

- Supersymmetry is an attractive extension of the Standard Model
- The LHC and the ATLAS and CMS detectors have been operated very successfully in Run I and have provided around $\sim 20 \text{ fb}^{-1}$ of 8 TeV of excellent data per experiment (and $\sim 5 \text{ fb}^{-1}$ at 7 TeV)
- Four recent signature-driven searches at the LHC were summarized:
 - Direct top squark pair-production in one-lepton channel in CMS: arXiv:1308.1586
 - Searches for strong production of sparticles in final states with at least three b-jets in ATLAS: ATLAS-CONF-2013-061
 - Search for electroweak production of $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$, and $\tilde{\ell}$ using leptonic final states in CMS: CMS-PAS-SUS-13-006
 - Search for X[±] nearly mass-degenerate with the lightest X⁰ based on a disappearing-track signature in ATLAS: ATLAS-CONF-2013-069

(far from a complete summary - see ATLAS and CMS public results for more!)

- \Rightarrow no sign of SUSY \Rightarrow exclusion limits!
- ... but SUSY is hard to kill! Many places left to hide in \Rightarrow hunt will continue at the LHC in Run II at higher \sqrt{s} and luminosities!

Back-up slides

イロン イヨン イヨン イヨン

Summary plots for \tilde{g} -mediated \tilde{t} production

ATLAS

CMS

Summary plots for direct \tilde{t} pair-production

ATLAS

イロト イヨト イヨト イヨ

Examples of ATLAS exclusions for direct $\tilde{\chi}^{\pm}/\tilde{\chi}^{0}$ production

イロト イヨト イヨト イヨト

The ATLAS detector

The CMS detector

