

Trại phong Quy Hòa lived and died Hàn Mạc Tử - prolific poet

Sub-arcsecond far-infrared space observatory: a new step to the understanding of the universe

Nguyễn Lương Quang Canadian Institute for Theoretical Astrophysics Toronto - Canada

FIRI project www.firi.eu Spokeperson: Marc Sauvage (Service d'astrophysique, CEA Saclay, FR)

Windows on the Universe, Quy Nhơn, Việt Nam - 12-17 August 2013

Success of Herschel Space Observatory

Launched: 14 May, 2009 Ended: 29 April 2013 1446 ODs 3.5 m telescope, 3 instruments

Spectral & Photometric Imaging REceiver

PACS: 70 or 100 and 160 µm SPIRE: 250, 350, 500 µm Resolutions: 5-36"

Spectroscopic instruments:

PACS: 60-210 µm (line imaging) SPIRE: 194-672 µm (low spectral resolution) HIFI: 212-625 µm (high spectral resolution)

Photodetector Array Camera & Spectrometer

Heterodyne Instrument for the Far-Infrared

108

(Jy)

density

10

10

B = 2 T = 19 K

Frequency (GHz)

 10^{4}

Success of Herschel Space Observatory: only in star formation

Star formation:

Roles of filaments and ridges in star formation CMF --> IMF Nature of prestellar cores Complete the evolutionary scenario of star formation from filaments to cores and to stars

Chemistry in the ISM:

Roles of waters in protoplanetary disk/outflows, star formation

Discovery of the high abundance of CII in the galaxy Discovery of SH, O_2 , ND, HD,OH⁺ and H₂O⁺.....

The need for a sub-arcsecond FIR observatory

Future SPICA (PI: Japan): 30-200 $\mu m,\,1$ or 2 order of magnitude more sensitive than Herschel but resolution is not much better

- * Exploratory territory for a high-resolution FIR observatory:
 - Wavelength: 20 500 μm
 - Angular resolution: 0.1 1" at 100 μm
 - Launch time: end of 2020s, 2030s

The need for a sub-arcsecond FIR observatory

- The FIR domain will present a severe gap in resolution and sensitivity between ALMA and JWST/E-ELT.
- The band maps on key tracers:
- dust continuum peak, and features tracing composition and formation. vide variety of molecular tracers including O₂.

Goicoechea et al. (2012)

The need for a sub-arcsecond FIR observatory

	Science case	Resolution	
	Gas mass in disks	heterodyne	
	Water transport	heterodyne	
	Protoplanetary systems	SED, medium	
Spectral resolution:	Feedback	SED	Angular resolution: 0.1-1"
	Massive star formation	SED	
heterodyne: R = 10 ⁶⁻⁷	Highlighting activity with water	heterodyne	planet: 100 AU @ 1 kpc
-	Magnetic field	SED	
medium:R = 1000 – 5000	Dust budget	SED, medium	protostar: 0.1 pc @ 200 kpc
	Thermal balance	medium	
SED [.] broadband	Massive star formation	SED, medium	galaxy: 1 kpc @ 200 Mpc
	AGN/host relationship	medium	galaxy: The & 200 mpo
	Galaxy and AGN co-evolution	medium	
	H_2 for galaxy evolution	medium	
	First stars	medium	

- Addressing that angular resolution gaps accessing science cases such as:
 - * Protoplanetary disks (gas mass available for planet formation, structure, composition including water content).
 - Star formation (structure formation, feedback processes, IMF at the high mass end, massive star formation scenario).
 - * Nearby universe (dust formation, thermal balance in the ISM, IMF in external galaxies, AGN/host relationship including star formation quenching).
 - * The evolving universe (co-evolution of galaxies and their central black holes, H₂ as a tracer for galaxy mass accretion and first stars).

Sub-arcsecond FIR observatory: telescope concepts

- ***** Thinned Aperture Light Collector (TALC):
 - * 20m diameter, 3m width annulus telescope
 - Optics & data reduction challenge
 - Mechanical challenge
 - Unfilled main beam --> 30% of the total energy
 - * Sensitivity $5\sigma = 0.1 \text{ mJy}$ @ 1hr compare to $5\sigma = 5.5 \text{ mJy}$ @ 1hr of Herschel

Sub-arcsecond FIR observatory: telescope concepts

FIRIT 36m direct imaging interferometer

- Far-InfraRed Interferometer (FIRIT):
 - * 36m baseline, two or three 1m diameter telescopes
 - Double Fourier modulation technique --> spatial & spectral interferometry
 - * Resolution: 2.8" @ 400 μm, 0.18" @ 25 μm
 - Fuel efficiency

Sub-arcsecond FIR observatory: telescope concepts

Exploratory Submm Space Radio-Interferometric Telescope (ESPRIT) (Wild et al. 2008):

- Four Six 3.5m diameter telescopes
- Baseline up to 50m
- Free flying configuration to fill uv plane
- * Heterodyne interferometer as HERSCHEL/HIFI or ALMA --> Great spectral resolution
- Sub components: high sensitivity, large bandwidth, sensitive heterodyne mixer: Local Oscillator, correlation system & colling system (4K is OK)
- Baseline change --> consume fuel --> trade-off between good u-v coverage & operating lifetime

Conclusion

- In the L2/L3 era, the FIR domain will present a severe gap in resolution and sensitivity between ALMA and JWST/E-ELT.
- The band maps on key tracers:
 - # dust continuum peak, and features tracing composition and formation.
 - * wide variety of molecular tracers including water, and HD.
 - # fine structure lines from various ISM phases.
- Addressing that angular resolution gaps accessing science cases such as:
 - Protoplanetary disks (gas mass available for planet formation, structure, composition including water content).
 - Star formation (structure formation, feedback processes, IMF at the high mass end, massive star formation scenario).
 - * Nearby universe (dust formation, thermal balance in the ISM, IMF in external galaxies, AGN/host relationship including star formation quenching).
 - * The evolving universe (co-evolution of galaxies and their central black holes, H₂ as a tracer for galaxy mass accretion and first stars).B=b

FIRIT 36m direct imaging interferometer

ESPRIT~50m

free-flying

heterodyne

interferometer

11

Download the white paper and Express your support at <u>www.firi.eu</u>

Thank you.

Thank you.

Thank you.

Cold Telescope – New Capability

 Mm instruments need bigger telescopes for better sensitivity

2. Far IR/Submm spectrometers need cold space telescope (cold is more important than big)

one year of integration time on Herschel can be done in < 10 sec on a SPICA/BLISS system.

A Golden Opportunity!

A 3 m class cold telescope offers dramatic improvement in far IR/submm sensitivity

C.M. Bradford