The International Center of Interdisciplinary Science Education (ICISE)

Trại phong Quy Hòa
lived and died Hàn Mạc Tử - prolific poet
Sub-arcsecond far-infrared space observatory: a new step to the understanding of the universe

Nguyễn Lương Quang
Canadian Institute for Theoretical Astrophysics
Toronto - Canada

FIRI project www.firi.eu
Spokesperson: Marc Sauvage (Service d'astrophysique, CEA Saclay, FR)

Windows on the Universe, Quy Nhơn, Việt Nam - 12-17 August 2013
Success of Herschel Space Observatory

Launched: 14 May, 2009
Ended: 29 April 2013
1446 ODs
3.5 m telescope, 3 instruments

Imaging instruments:
PACS: 70 or 100 and 160 μm
SPIRE: 250, 350, 500 μm
Resolutions: 5-36”

Spectroscopic instruments:
PACS: 60-210 μm (line imaging)
SPIRE: 194-672 μm (low spectral resolution)
HIFI: 212-625 μm (high spectral resolution)
Success of Herschel Space Observatory: only in star formation

- Star formation:
 - Roles of filaments and ridges in star formation
 - CMF -> IMF
 - Nature of prestellar cores
 - Complete the evolutionary scenario of star formation from filaments to cores and to stars

- Chemistry in the ISM:
 - Roles of waters in protoplanetary disk/outflows, star formation
 - Discovery of the high abundance of CII in the galaxy
 - Discovery of SH, O₂, ND, HD, OH⁺ and H₂O⁺......
The need for a sub-arcsecond FIR observatory

Future SPICA (PI: Japan): 30-200 μm, 1 or 2 order of magnitude more sensitive than Herschel but resolution is not much better

Exploratory territory for a high-resolution FIR observatory:
- Wavelength: 20 – 500 μm
- Angular resolution: 0.1 – 1" at 100 μm
- Launch time: end of 2020s, 2030s
The need for a sub-arcsecond FIR observatory

- The FIR domain will present a severe gap in resolution and sensitivity between ALMA and JWST/E-ELT.
- The band maps on key tracers:
 - dust continuum peak, and features tracing composition and formation.
 - wide variety of molecular tracers including water, HD, and \(\text{O}_2 \).

Goicoechea et al. (2012)

Motte et al. (2010)
The need for a sub-arcsecond FIR observatory

<table>
<thead>
<tr>
<th>Science case</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas mass in disks</td>
<td>heterodyne</td>
</tr>
<tr>
<td>Water transport</td>
<td>heterodyne</td>
</tr>
<tr>
<td>Protoplanetary systems</td>
<td>SED, medium</td>
</tr>
<tr>
<td>Feedback</td>
<td>SED</td>
</tr>
<tr>
<td>Massive star formation</td>
<td>SED</td>
</tr>
<tr>
<td>Highlighting activity with water</td>
<td>heterodyne</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>SED</td>
</tr>
<tr>
<td>Dust budget</td>
<td>SED, medium</td>
</tr>
<tr>
<td>Thermal balance</td>
<td>medium</td>
</tr>
<tr>
<td>Massive star formation</td>
<td>medium</td>
</tr>
<tr>
<td>AGN/host relationship</td>
<td>medium</td>
</tr>
<tr>
<td>Galaxy and AGN co-evolution</td>
<td>medium</td>
</tr>
<tr>
<td>H₂ for galaxy evolution</td>
<td>medium</td>
</tr>
<tr>
<td>First stars</td>
<td>medium</td>
</tr>
</tbody>
</table>

- Spectral resolution:
 - heterodyne: $R = 10^{6-7}$
 - medium: $R = 1000 – 5000$
 - SED: broadband

- Angular resolution: 0.1-1"
 - planet: 100 AU @ 1 kpc
 - protostar: 0.1 pc @ 200 kpc
 - galaxy: 1 kpc @ 200 Mpc

- Addressing angular resolution gaps accessing science cases such as:
 - Protoplanetary disks (gas mass available for planet formation, structure, composition including water content).
 - Star formation (structure formation, feedback processes, IMF at the high mass end, massive star formation scenario).
 - Nearby universe (dust formation, thermal balance in the ISM, IMF in external galaxies, AGN/host relationship including star formation quenching).
 - The evolving universe (co-evolution of galaxies and their central black holes, H₂ as a tracer for galaxy mass accretion and first stars).
Sub-arcsecond FIR observatory: telescope concepts

Thinned Aperture Light Collector (TALC):
- 20m diameter, 3m width annulus telescope
- Optics & data reduction challenge
- Mechanical challenge
- Unfilled main beam --> 30% of the total energy

Sensitivity $5\sigma = 0.1$ mJy @ 1hr compare to $5\sigma = 5.5$ mJy @ 1hr of Herschel
Far-InfraRed Interferometer (FIRIT):

- 36m baseline, two or three 1m diameter telescopes
- Double Fourier modulation technique --> spatial & spectral interferometry
- Resolution: 2.8" @ 400 μm, 0.18" @ 25 μm
- Fuel efficiency
Exploratory Submm Space Radio-Interferometric Telescope (ESPRIT) (Wild et al. 2008):

- Four - Six 3.5m diameter telescopes
- Baseline up to 50m
- Free flying configuration to fill uv plane
- Heterodyne interferometer as HERSCHEL/HIFI or ALMA --> Great spectral resolution
- Sub components: high sensitivity, large bandwidth, sensitive heterodyne mixer: Local Oscillator, correlation system & colling system (4K is OK)
- Baseline change --> consume fuel --> trade-off between good u-v coverage & operating lifetime
Conclusion

- In the L2/L3 era, the FIR domain will present a severe gap in resolution and sensitivity between ALMA and JWST/E-ELT.

- The band maps on key tracers:
 - dust continuum peak, and features tracing composition and formation.
 - wide variety of molecular tracers including water, and HD.
 - fine structure lines from various ISM phases.

- Addressing that angular resolution gaps accessing science cases such as:
 - Protoplanetary disks (gas mass available for planet formation, structure, composition including water content).
 - Star formation (structure formation, feedback processes, IMF at the high mass end, massive star formation scenario).
 - Nearby universe (dust formation, thermal balance in the ISM, IMF in external galaxies, AGN/host relationship including star formation quenching).
 - The evolving universe (co-evolution of galaxies and their central black holes, H\textsubscript{2} as a tracer for galaxy mass accretion and first stars).

Download the white paper and Express your support at www.firi.eu
Thank you.
Thank you.
Thank you.
1. Mm instruments need bigger telescopes for better sensitivity

2. Far IR/Submm spectrometers need cold space telescope (cold is more important than big)

one year of integration time on Herschel can be done in < 10 sec on a SPICA/BLISS system.

A Golden Opportunity!