

Radio detection of air showers at the Pierre Auger Observatory

Anna Nelles for the Pierre Auger Collaboration

Radboud University Nijmegen

What are we looking for?

- What can measuring the radio emission contribute to cosmic ray physics?
- What causes the radio emission and what are the physics processes?
 - theoretical understanding
 signal characteristics
- How is this measured at the Pierre Auger Observatory?
 - set-uprecent results

Radio Emission from Air Showers

Radio Emission from Air Showers

Radio Emission from Air Showers

Electromagnetic component responsible for radio emission

Emission arises from:

- e+ and e- are accelerated in geomagnetic field (geomagnetic effect)
- more e- than e+ in the shower (charge excess)

Emission is affected by:

- Superposition of emission
- Cherenkov effects

Askaryan (1962), Kahn & Lerche (1966), Allan (1971), Falcke & Gorham (2003), ...

- Big questions about cosmic rays of the highest energies:
 - Where are the **sites of acceleration**?
 - What **type of particles** are these cosmic rays?
- Radio Detectors are an efficient alternative method:

- Big questions about cosmic rays of the highest energies:
 - Where are the sites of acceleration?
 - What **type of particles** are these cosmic rays?
- Radio Detectors are an efficient alternative method:
- Radio emission is sensitive to composition

 "traditional" methods (e.g. fluorescence or Cherenkov light): low duty-cycle (12-15%) and weather dependent

- Big questions about cosmic rays of the highest energies:
 - Where are the sites of acceleration?
 - What **type of particles** are these cosmic rays?
- Radio Detectors are an efficient alternative method:
- Radio emission is sensitive to composition

 "traditional" methods (e.g. fluorescence or Cherenkov light): low duty-cycle (12-15%) and weather dependent

- Big questions about cosmic rays of the highest energies:
 - Where are the sites of acceleration?
 - What **type of particles** are these cosmic rays?
- Radio Detectors are an efficient alternative method:
- Radio emission is sensitive to composition

 "traditional" methods (e.g. fluorescence or Cherenkov light): low duty-cycle (12-15%) and weather dependent

LOFAR: Single event X_{max} resolution

The Pierre Auger Observatory

Baseline Detectors:

• 27 Fluorescence Telescopes

- measuring UV emission in cloudless and moonless nights
- calorimetric measurement of air showers
- sensitive to shower development

- Loma Amarilla [km] 60 50 Coihueco HEA 30 Los Morados 20 Central 10 Campus Los Leone
 - 1600 Water-Cherenkov Detectors
 - ~100% duty-cycle
 - snap-shot of shower development at ground level

Measuring the Radio Emission

Measuring the Radio Emission

The Auger Engineering Radio Array

8 Anna Nelles for the Pierre Auger Collaboration, 2013

The Auger Engineering Radio Array

 Different versions of hardware are tested (30-80 MHz)

Filters, LNA, antenna,

AERA II: Butterfly antenna

AERA I: Logarithmic-periodic dipole antenna LPDA

• Fully autonomous stations with **low power consumption** (~ 12 W)

mechanics, RFI

• Optimized:

behaviour

- Continuos optimization for different detection schemes:
 - self-trigger
 - external-trigger on particle data
- All hardware effects are measured and corrected for in data analysis
- Database system to keep track of engineering changes
- Final data product is independent of characteristics of set-up
- 9 Anna Nelles for the Pierre Auger Collaboration, 2013

Monitoring: Radio Environment

- New detection technique needs continuos monitoring
- Automated tool implemented to monitor recorded data
- Example: background spectrum

Example Events

Coincidence of Surface Detectors and Radio Array

 Surface Detector information is used as cross check whether pulse is originating from cosmic ray (agreement of direction)

Example Events

900 1000 1100 1200

800

700

400

500

Radio Events

270°

AERA I Data from May 2011 - April 2013

- Direction of magentic field at Auger
 - Events detected in radio (self + ext. trig)

13 Anna Nelles for the Pierre Auger Collaboration, 2013

- Geomagnetic effect is clearly visible $\vec{E} \propto \vec{v} \times \vec{B}$
- Effects of trigger and dead time not corrected for, i.e. not a spectrum

Emission mechanisms

Simulations of radio emission

- Theories describing the emission processes are converging
- Simulations are essential tool for the study of the dependencies on shower parameters such as X_{max}
- Several models available and can be tested with the data

AERA event compared to two different radio simulations

15 Anna Nelles for the Pierre Auger Collaboration, 2013

The Pierre Auger Collaboration, ICRC 2013

Conclusions

- Auger Engineering Array is testing radioemissions of air showers at very high energies
- Excellent possibilities of cross-calibration with baseline detectors of Pierre Auger Observatory
- 124 stations currently deployed on 6 km²
- New array will significantly increase event statistics (x 6)
- First physics publications are underway
- Simulations nicely describe the data

16 Anna Nelles for the Pierre Auger Collaboration, 2013

