

Flavor Physics: A Theory Overview

Guido Martinelli SISSA Trieste & INFN Roma

Windows on the Universe Rencontres du Vietnam ICISE Quy Nhon August 12-17 2013

International School for Advanced Studies

Precision Flavor Physics in the quark sector (neutrinos covered by Andre de Gouvêa)
 CKM analysis and CP violation in the SM
 B→ τν & B_s → μμ
 Flavor BSM
 Conclusions

many thanks to M. Bona,
M. Ciuchini, L. Silvestrini
& Vagnoni
for discussions and for
a few slides

The Higgs Particle has been discovered M_H ≈ 125 GeV

International School for Advanced Studies

- Provide the best determination of the CKM parameters;
- Test the consistency of the SM (``direct" vs ``indirect" determinations) @ the quantum level;
- Provide predictions for SM observables (in the past for example sin 2β and Δm_s

Flavor physics in the Standard Model

In the SM, the quark mass matrix, from which the CKM matrix and *GP* violation originate, is determined by the coupling of the Higgs boson to fermions.

Two accidental symmetries:

Absence of FCNC at tree level (& GIM suppression of FCNC @loop level)

No CP violation @ tree level

Flavour Physics is extremely sensitive To New Physics (NP)

Flavor vs New Physics

flavor physics can be used in two "modes":

- 1. "NP Lagrangian reconstruction" mode
- an external information on the NP scale is required
- the main tool are correlations among observables
- needs theoretical control on uncertainties of both SM and NP contributions
- 2. "Discovery" mode
- looks for deviation from the SM whatever the origin
- needs theoretical control of the SM contribution only
- in general cannot provide precise information on the NP scale, but a positive result would be a strong evidence that NP is not too far (i.e. in the multi-TeV region)

the path leading to TeV NP is narrower after the results of the LHC at 7 & 8 TeV in any case will be further explored in the next run

(*i.e. LHC*)

Jérôme Charles, Olivier Deschamps, Sébastien Descotes-Genon, Ryosuke Itoh, Andreas Jantsch, Heiko Lacker, Andreas Menzel, Stéphane Monteil, Valentin Niess, Jose Ocariz, Jean Orloff, StéphaneT'Jampens, Vincent Tisserand, Karim Trabelsi

See also

Laiho & Lunghi & Van de Water (http://krone.physik.unizh.ch/~lunghi/webpage/LatAves/page3/page3.html); Lunghi & Soni (1010.67069).

See also

Laiho & Lunghi & Van de Water (http://krone.physik.unizh.ch/~lunghi/webpage/LatAves/page3/page3.html); Lunghi & Soni (1010.67069).

N(N-1)/2 angles and (N-1)(N-2)/2 phases

N=3 3 angles + 1 phase KM the phase generates complex couplings i.e. <u>CP</u> <u>violation;</u>

6 masses +3 angles +1 phase = 10 parameters

$$= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{bmatrix}$$

Quark masses & Generation Mixing

 $|V_{ud}| = 0.9735(8)$ $\frac{-v_e}{v_e} \begin{vmatrix} V_{us} \\ V_{us} \end{vmatrix} = 0.2196(23) \\ V_{cd} \end{vmatrix} = 0.224(16)$ $|V_{cs}| = 0.970(9)(70)$ $|V_{cb}| = 0.0406(8)$ $|V_{ub}| = 0.00409(25)$ $|V_{tb}| = 0.99(29)$ (0.999)

The Wolfenstein Parametrization

1 - 1/2 λ ²	λ	Αλ ³ (ρ - i η)	V _{ub}
- λ	1 - 1/2 λ ²	A λ^2	+ Ο(λ ⁴)
A $\lambda^3 \times$ (1- ρ - i η)	-A λ ²	1	
<mark>ν_{td}</mark> λ ~ 0.2 η ~ 0.2	A ~ 0. ρ ~ 0.	$\begin{cases} Sin \ \theta_1 \\ Sin \ \theta_2 \\ Sin \ \theta_1 \\ Sin \ \theta_1 \\ \end{cases}$	2 = λ 3 = A λ ² 3 = A λ ³ (ρ-i η)

Measure
$$V_{CKM}$$
Other NP parameters $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c)$ $\bar{\rho}^2 + \bar{\eta}^2$ $\bar{\Lambda}, \lambda_1, F(1), \dots$ ϵ_K $\eta [(1 - \bar{\rho}) + \dots]$ B_K Δm_d $(1 - \bar{\rho})^2 + \bar{\eta}^2$ $f_{B_d}^2 B_{B_d}$ $\Delta m_d / \Delta m_1$ $(1 - \bar{\rho})^2 + \bar{\eta}^2$ ξ $A_{CP}(B_d \rightarrow J/\psi K_s)$ $\sin 2\beta$ $Q^{EXP} = V_{CKM} \times \langle H_F | \hat{O} | H_I \rangle$

For details see: UTfit Collaboration

classical UT analysis

http://www.utfit.org

Classical Quantities used in the Standard UT Analysis

levels @ 68% (95%) CL

New Quantities used in the UT Analysis

UT-ANGLES

Several new determinations of UT angles are now available, thanks to the results coming from the B-Factory experiments

New bounds are available from rare B and K decays. They do not still have a strong impact on the global fit and they are not used at present.

 $(\underline{B} \rightarrow \rho/\omega \gamma)/(\underline{B} \rightarrow K^* \gamma)$

Unitarity Triangle analysis in the SM:

Observables	Accuracy	
V _{ub} /V _{cb}	~ 15%	
ε _κ	~ 0.5%	
Δm_{d}	~ 1%	
$ \Delta \mathbf{m}_{d}/\Delta \mathbf{m}_{s} $	~ 1%	
sin2β	~ 3%	
cos2β	~ 15%	
α	~ 7%	
γ	~ 10%	
BR(B $\rightarrow \tau v$)	~ 25%	

CKM matrix is the dominant source of flavour mixing and CP violation

The CKM matrix in the SM Spring 2013

 $\begin{vmatrix} 0.9742(1) & 0.2255(6) & 3.6(1) \cdot 10^{-3} e^{-i69(3)^{\circ}} \\ -0.2253(6) e^{i0.035(1)^{\circ}} & 0.9734(1) e^{-i0.0018(1)^{\circ}} & 4.21(6) \cdot 10^{-2} \\ 8.9(2) \cdot 10^{-3} e^{-i21.9(1)^{\circ}} & -4.13(6) \cdot 10^{-2} e^{i1.08(4)^{\circ}} & 0.99911(2) \end{vmatrix}$

Standard parametrization (PDG) $sin\Theta_{12}$ = 0.2254±0.0007 $sin\Theta_{23}$ = (4.207±0.064)·10⁻² $sin\Theta_{13}$ = (3.64±0.13)·10⁻³ δ = (69.2±3.1)°

Wolfenstein parametrization

- $\lambda = 0.22535 \pm 0.00065$ $A = 0.827 \pm 0.013$
- $\rho = 0.136 \pm 0.021$ $\eta = 0.359 \pm 0.014$

SM predictions: Bd & K

	Measurement	%	Prediction	Pull(ơ)		
sin2β	0.680±0.023	3.5	0.755±0.044	+1.5		
γ	(70.8±7.8)°	11	(68.6±3.6)°	· <1		
α	(90.9±8.0)°	9	(87.7±3.6)°	< 1		
Vcb 10 ³	41.0±1.0	2.5	42.7±0.8	+1.3		
Vub 10 ³	3.82±0.56	15	3.64±0.13	< 1		
<i>E</i> _{<i>K</i>} 10 ³	2.228±0.011	0.5	1.88±0.20	-1.7		
B(<u>B→τν</u>)	(99±25) 10 -6	25	(83±8) ∙ 10⁻	⁶ < 1		
B(B → τ ν) _{Old} = (167 ± 30) 10 ⁻⁶						

The SM prediction can be obtained removing γ from the full fit.

With new LHCb results we are now able to have good γ reconstruction in the GLW analysis.

The issue of central values is now under discussion, however, both results show that there's no tension in this sector. 10

inclusives vs exclusives

Spring 2013

 $B_{K \text{ lattice}} = 0.733 \pm 0.029$ update FLAG value $B_{K \text{ lattice}} = 0.766 \pm 0.011$

 $B_{K \text{ fit}} = 0.866 \pm 0.086$

A. Buras, D. Guadagnoli, G. Isidori Phys.Lett. B688 (2010) 309-313, e-Print: arXiv:1002.3612 [hep-ph]

NEED A BETTER CONTROL OF A/mc CORRECTIONS

A larger value of $|V_{cb}|$ would reduce the deviation: $|V_{cb}|_{excl}$: 1.5 $\sigma \rightarrow$ 1.1 σ

- the theory error in sin2β from $B \rightarrow J/\Psi K$ is small and under control. A conservative bound obtained from data is included in the analysis
- * BR($B \rightarrow \tau v$) demands a large value of $|V_{ub}|$. The theoretical uncertainty, due to f_B , is controlled by the fit
- The ε_K deviation is triggered by improvements in B_K from the lattice and the inclusion of the ξ term à la Buras-Guadagnoli(+Isidori). Yet the ε_K formula is not under control at the few percent level
 |V_{ub}| from semileptonic decays is still not theoretically sound as necessary (incl. vs excl., models, f.f.,...). Yet a simple shift of the central value alone cannot

reconcile sin2 β and BR(B $\rightarrow \tau v$) (and ε_K)

Is the present picture showing a **Model Standardissimo**?

An evidence, an evidence, my kingdom for an evidence

From Shakespeare's Richard III

- 1) Possible tensions in the present SM Fit?
- **2)** Fit of NP- Δ F=2 parameters in a Model "independent" way
- 3) "Scale" analysis in $\Delta F=2$

What for a ``standardissimo" CKM which agrees so well with the experimental observations?

New Physics at the EW scale is "flavor blind" -> MINIMAL FLAVOR VIOLATION, namely flavour originates only from the Yukawa couplings of the SM New Physics introduces new sources of flavor, the contribution of which, at most < 20 %, should be found in the present data, e.g. in the asymmetries of Bs decays

.... beyond the Standard Model

UT Analysis:
Model independent analysis
Limits on the deviations
NP scale update

Main Ingredients and General Parametrizations

Fit simultaneously CKM and NP parameters (generalized Utfit)

$$H^{\Delta F=2} = \hat{m} - \frac{i}{2}\hat{\Gamma} \quad A = \hat{m}_{12} = \langle \bar{M}|\hat{m}|M\rangle \quad \Gamma_{12} = \langle \bar{M}|\hat{\Gamma}|M\rangle$$

Neutral Kaon Mixing

$$ReA_K = C_{\Delta m_K} ReA_K^{SM}$$
 $ImA_K = C_{\varepsilon} ImA_K^{SM}$

B_d and **B**_s mixing

$$A_q e^{2i\phi_q} \equiv C_{B_q} e^{2i\phi_{B_q}} \times A_q^{SM} e^{2i\phi_q^{SM}} = \left(1 + \frac{A_q^{NP}}{A_q^{SM}} e^{2i(\phi_q^{NP} - \phi_q^{SM})}\right) \times A_q^{SM} e^{2i\phi_q^{SM}}$$

$$C_{B_s}e^{2i\phi_{B_s}} = \frac{A_s^{SM}e^{-2i\beta_s} + A_s^{NP}e^{2i(\phi_s^{NP} - \beta_s)}}{A_s^{SM}e^{-2i\beta_s}} = \frac{\langle \bar{B}_s | H_{eff}^{full} | B_s \rangle}{\langle \bar{B}_s | H_{eff}^{SM} | B_s \rangle}$$

$$\begin{split} \frac{\Gamma_{12}^{q}}{A_{q}} &= -2\frac{\kappa}{C_{B_{q}}} \left\{ e^{i2\phi_{B_{q}}} \left(n_{1} + \frac{n_{6}B_{2} + n_{11}}{B_{1}} \right) - \frac{e^{i(\phi_{q}^{\text{SM}} + 2\phi_{B_{q}})}}{R_{t}^{q}} \left(n_{2} + \frac{n_{7}B_{2} + n_{12}}{B_{1}} \right) \right. \\ &+ \frac{e^{i2(\phi_{q}^{\text{SM}} + \phi_{B_{q}})}}{R_{t}^{q^{2}}} \left(n_{3} + \frac{n_{8}B_{2} + n_{13}}{B_{1}} \right) + e^{i(\phi_{q}^{\text{Pen}} + 2\phi_{B_{q}})} C_{q}^{\text{Pen}} \left(n_{4} + n_{9}\frac{B_{2}}{B_{1}} \right) \\ &- e^{i(\phi_{q}^{\text{SM}} + \phi_{q}^{\text{Pen}} + 2\phi_{B_{q}})} \frac{C_{q}^{\text{Pen}}}{R_{t}^{q}} \left(n_{5} + n_{10}\frac{B_{2}}{B_{1}} \right) \right\} \end{split}$$

 C_q^{Pen} and ϕ_q^{Pen} parametrize possible NP contributions to Γ^q_{12} from b -> s penguins

Physical observables

$$\Delta m_s = |A_s| = C_{B_s} \Delta m_s^{SM}$$

$$2\phi_{s} = -\arg A_{s} = 2 \left(\beta_{s} - \phi_{B_{s}}\right)$$
$$A_{SL}^{s} = \frac{\Gamma(\bar{B}_{s} \to l^{+}X) - \Gamma(B_{s} \to l^{-}X)}{\Gamma(\bar{B}_{s} \to l^{+}X) + \Gamma(B_{s} \to l^{-}X)} = Im\left(\frac{\Gamma_{12}^{s}}{A_{s}}\right)$$

$$A_{SL}^{\mu\mu} = \frac{f_d \chi_{d0} A_{SL}^d + f_s \chi_{s0} A_{SL}^s}{f_d \chi_{d0} + f_s \chi_{s0}}$$
$$\frac{\Delta \Gamma_s}{\Delta m_s} = Re \left(\frac{\Gamma_{12}^s}{A_s}\right) \qquad \tau_{B_s}^{FS} = \frac{1}{\Gamma_s} \frac{1 + (\Delta \Gamma_s / 2\Gamma_s)^2}{1 - (\Delta \Gamma_s / 2\Gamma_s)^2}$$

assumptions: three generations no NP in tree level decays no large NP EWP in $B \rightarrow \pi\pi$

 $\rho = 0.147 \pm 0.048$ $\eta = 0.370 \pm 0.057$ $(\varrho_{SM} = 0.133 \pm 0.021)$ $(\eta_{SM} = 0.350 \pm 0.014)$

$$P(B_q
ightarrow \overline{B_q})
eq P(\overline{B_q}
ightarrow B_q)$$

LHCb: pp collider \rightarrow production asymmetry

$$A_{meas} = \frac{N(D_q^- \mu^+) - N(D_q^+ \mu^-)}{N(D_q^- \mu^+) + N(D_q^+ \mu^-)} = \frac{a_{sl}^q}{2} + [a_{prod} - \frac{a_{sl}^q}{2}]\kappa_q$$

due to fast B_s oscillation time integrated a^s_{sl} measurement possible ($\kappa_s = 0.2\%$) however for a^d_{sl} time dependent analysis required ($\kappa_d \sim 30\%$)

 a_{sl}^s = (-0.06 \pm 0.50 \pm 0.36)%

LHCb-PAPER-2013-033-001

single most precise result on a_{sl}^d using partial reconstructed $B \rightarrow D^* \ell \nu$ + kaon tags: a_{sl}^d = (0.06 ± 0.16^{+0.36}_{-0.32})% Babar: arXiv:1305.1575

Stephanie Hansmann-Menzemer 14

Angular analysis of $B_s \rightarrow J/\psi\phi$ to measure $(\phi_{Bs}, \Delta\Gamma_{Bs})$ In SM, $\phi_{Bs} \rightarrow -2\beta_s = 2 \cdot \arg(V_{cs}V_{cb}^*/V_{ts}V_{tb}^*) = -2.1^{\circ} \pm 0.1^{\circ}$

■ 2010 CDF/DØ φ_{Bs} ∈ [-67.6°, -30.9°]U[-148.9°, -111.1°]

CPV, SM and NP

 ϕ_{Bs}

Angular analysis of $B_s \rightarrow J/\psi\phi$ to measure $(\phi_{Bs}, \Delta\Gamma_{Bs})$ In SM, $\phi_{Bs} \rightarrow -2\beta_s = 2 \cdot \arg(V_{cs}V_{cb}^*/V_{ts}V_{tb}^*) = -2.1^{\circ} \pm 0.1^{\circ}$

		CPV IN B		Spring 2013		
		Measurement	%	Prediction P	'ull (σ)	
Z	∆m _₅ [ps⁻¹]	17.72±0.04	0.2	17.5±1.3	< 1	
2	2 β₅	(0.3±2.5)°	120	(2.13±0.09)°	< 1	
Z	$\Delta \Gamma_{s} / \Gamma_{s}$	0.137±0.016	12	0.147±0.014	< 1	
1	۹ _{SL} ^s ·10 ⁴	-109±40	37	-3.3±6.8	+2.6	
	LHCb 1.0 fb ⁻⁴ + CDF 9.6 fb ⁻⁴ + DØ 8 fb ⁻⁴ + ATLAS 4.9 fb ⁻⁴					

Results

LHCb result (Phys. Rev. D 87 112010 (2013) - 1fb⁻¹): $\phi_s = 0.01 \pm 0.07 \pm 0.01$ rad $\Delta \Gamma_s = 0.106 \pm 0.011 \pm 0.007$ ps⁻¹ $\Gamma_s = 0.661 \pm 0.004 \pm 0.006$ ps⁻¹

Stephanie Hansmann-Menzemer 12

NP parameters (i)

NP parameters (ii)

TESTING THE NEW PHYSICS SCALE Effective Theory Analysis ΔF=2

Effective Hamiltonian in the mixing amplitudes

$$H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_{i}(\mu) Q_{i}(\mu) + \sum_{i=1}^{3} \widetilde{C}_{i}(\mu) \widetilde{Q}_{i}(\mu)$$

$$Q_{1} = \overline{q}_{L}^{\alpha} \gamma_{\mu} b_{L}^{\alpha} \overline{q}_{L}^{\beta} \gamma^{\mu} b_{L}^{\beta} \quad (SM/MFV)$$

$$Q_{2} = \overline{q}_{R}^{\alpha} b_{L}^{\alpha} \overline{q}_{R}^{\beta} b_{L}^{\beta} \qquad Q_{3} = \overline{q}_{R}^{\alpha} b_{L}^{\beta} \overline{q}_{R}^{\beta} b_{L}^{\beta}$$

$$Q_{4} = \overline{q}_{R}^{\alpha} b_{L}^{\alpha} \overline{q}_{L}^{\beta} b_{R}^{\beta} \qquad Q_{5} = \overline{q}_{R}^{\alpha} b_{L}^{\beta} \overline{q}_{L}^{\beta} b_{R}^{\beta}$$

$$\widetilde{Q}_{1} = \overline{q}_{R}^{\alpha} \gamma_{\mu} b_{R}^{\alpha} \overline{q}_{R}^{\beta} \gamma^{\mu} b_{R}^{\beta} \qquad \widetilde{Q}_{3} = \overline{q}_{L}^{\alpha} b_{R}^{\beta} \overline{q}_{L}^{\beta} b_{R}^{\beta}$$

$$C_j(\Lambda) = \frac{LF_j}{\Lambda^2} \Rightarrow \Lambda = \sqrt{\frac{LF_j}{C_j(\Lambda)}}$$

 $C(\Lambda)$ coefficients are extracted from data

L is loop factor and should be : L=1 tree/strong int. NP L= α_s^2 or α_W^2 for strong/weak perturb. NP

$$F_1 = F_{SM} = (V_{tq}V_{tb}^*)^2$$

 $F_{j=1} = 0$

MFV

|F_j|=F_{SM} arbitrary phases

NMFV

|F_j|=1 arbitrary phases

Flavour generic

results from the Wilson coefficients

the results obtained for the flavour scenarios: In deriving the lower bounds on the NP scale, we assume $L_i = 1$, corresponding to strongly-interacting and/or tree-level NP.

Non-perturbative NP Λ > 4.6 10⁵ TeV

NP in α_w loops Λ > 1.4 10⁴ TeV

preliminary results

CONCLUSIONS

- 1) The high precision of the SM UT Analysis allows to test the SM and to search for NP at a level which is competitive with direct searches
- 2) CKM matrix is the dominant source of flavour mixing and CP violation $\sigma(\rho) \sim 15\%$ & $\sigma(\eta) \sim 4\%$. SM analysis shows a good overall consistency
- 3) There are a few tensions that should be understood : $\sin 2\beta$, Br(B $\rightarrow \tau \nu$) and to a lesser extent ε_{K} . A single value of V_{ub} cannot resolve the tensions.
- 4) In B_s some tension in $a_{\mu\mu}$ and leptonic asymmetries (assuming SM Γ_{12})
- 5) The suggestion of a large Bs mixing phase has not survived to LHCb measurements.

Thus for the time being we have to remain with a STANDARDISSIMO STANDARD MODEL but ...

THANKS FOR YOUR ATTENTION

International School for Advanced Studies

