

b-hadron production and spectroscopy at LHCb Windows on the Universe - Rencontres du Vietnam

R. Märki on behalf of the LHCb collaboration

Ecole Polytechnique Fédérale de Lausanne (EPFL)

14 August 2013

In this talk I present three recent *b*-hadron production and spectroscopy results from LHCb

First observation of the decay $B_c^+ \rightarrow J/\psi K^+$

LHCB-PAPER-2013-021 - arXiv:1306.6723

Observation of $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$

LHCB-PAPER-2013-010 - arXiv:1304.4530

Observation of the decay $B_c^+
ightarrow B_s^0 \pi^+$

LHCb-PAPER-2013-044 – new at EPS !

The LHCb experiment at CERN

- LHCb single-arm forward spectrometer at the LHC
- Recording pp collisions with $\sqrt{s} = 7$ TeV (in 2011) and 8 TeV (in 2012)
- Optimized for measurements in heavy-flavour physics
- Comprizes tracking detectors, RICH detectors, calorimeters and muon chambers.
- The experiment has an angular acceptance of $2 < \eta < 5$

b-hadron production and spectroscopy at LHCb

Many b hadrons observed at LHCb

- *b* mesons (B^0, B^+, B_s^0, B_c^+) observed and measurement of
 - Masses
 - Lifetimes
 - Branching ratios for many modes
- b baryons (Λ_b^0 , Ξ_b^- , Ω_b^- , excited Λ_b^0 states) observed
- Also observation of other states like X(3872)

B_c^+ physics

Very recent results at LHCb in the B_c^+ sector

- The B_c^+ meson is composed of two heavy valence quarks, namely *b* and *c*
- It is the only weakly decaying doubly heavy meson
- So far only B⁺_c decays where the b quark decays into a c quark have been observed
- Decays where the *c* quark decays into an *s* quark are expected to have larger branching ratios ($V_{cs} > V_{cb}$)
- For *pp* collisions at a centre-of-mass energy of 7 TeV, the total B_c^+ production cross-section is predicted to be one order of magnitude higher than that at the Tevatron

$B_c^+ ightarrow J\!/\psi \, K^+$ (arXiv:1306.6723)

First observation of the decay $B_c^+ \to J\!/\psi\, {\it K}^+$

• Branching ratio with respect to $B_c^+ \rightarrow J/\psi \pi^+$ is predicted (including CKM matrix elements and form factors) to lie in the range 0.054 - 0.088

- We used the 2011 data set (1 fb $^{-1}$) at $\sqrt{s} = 7~{
 m TeV}$

$B_c^+ ightarrow J\!/\psi \, K^+$ (arXiv:1306.6723)

Unbinned maximum likelihood fit with four components:

- Double sided Crystal Ball function (DSCB) for both channels
- ARGUS for partially reconstructed
- Exponential for combinatorial background

In four bins of $DLL_{K\pi} = \ln \mathcal{L}(K) - \ln \mathcal{L}(\pi)$

• Total $B_c^+ \rightarrow J/\psi \, K^+$ yield of 46 \pm 12 (5.0 standard deviations)

- Yield ratio with respect to $B_c^+ \to J/\psi \pi^+$ is 0.071 \pm 0.020 (stat)
- Efficiency ratio over full DLL_{{\cal K}\pi} range taken from simulation is 1.029 \pm 0.007 (stat)

Systematics summary table

Source	Uncertainty (%)	
Mass window	0.9	
BDT selection	5.7	
$B_c^+ ightarrow J\!/\!\psiK^+$ signal model	0.7	
$B_c^+ ightarrow J\!/\!\psi \pi^+$ signal model	0.5	
Choice of signal shape	2.7	
Partially reconstructed background shape	2.3	
$B_c^+ ightarrow J\!/\!\psiK^+$ signals in ${ m DLL}_{K\pi} < 0$ bins	1.8	
$DLL_{K\pi}$ binning choice	1.2	
${\cal K}^+$ and π^+ interaction length	2.0	
Simulation sample size	0.7	
Total	7.5	

Final LHCb result

$$\frac{{}^{\mathcal{B}(B_c^+ \to J/\psi \; K^+)}}{{}^{\mathcal{B}(B_c^+ \to J/\psi \; \pi^+)}} = 0.069 \pm 0.019 \; (\text{stat}) \pm 0.005 \; (\text{syst})$$

It is consistent with predictions and (if using naive factorisation) also with other results like $B_s^0 \to D_s^- K^+(\pi^+)$, $B^+ \to \overline{D}^0 K^+(\pi^+)$ and $B^0 \to D^- K^+(\pi^+)$

$B_c^+ \rightarrow J/\psi \, D_s^+$ and $B_c^+ \rightarrow J/\psi \, D_s^{*+}$ (arXiv:1304.4530)

Observation of $B_c^+
ightarrow J\!/\psi\, D_s^+$ and $B_c^+
ightarrow J\!/\psi\, D_s^{*+}$

• The decay $B_c^+ \rightarrow J/\psi D_s^+$ is expected to proceed mainly through spectator and colour-suppressed spectator diagrams

- Using both the 2011 data (1 fb⁻¹ at $\sqrt{s} = 7$ TeV) and 2012 data (2 fb⁻¹ at $\sqrt{s} = 8$ TeV)
- Cut based selection
- $B_c^+ \rightarrow J/\psi D_s^{*+}$ being a pseudoscalar decaying into two vector particles, there are three helicity amplitudes (A₊₊, A₀₀, A₋₋)

$B_c^+ ightarrow J\!/\psi \, D_s^+$ and $B_c^+ ightarrow J\!/\psi \, D_s^{*+}$ (arXiv:1304.4530)

Extended unbinned maximum likelihood fit with four components (left plot):

- Single gaussian for $B_c^+ \rightarrow J/\psi D_s^+$ signal
- ${\rm \odot}~$ Two shapes from simulation for $B_c^+\to J\!/\psi\,D_s^{*+}$ with ${\rm A}_{++}/{\rm A}_{--}$ (same mass distribution) or ${\rm A}_{00}$
- Exponential function to describe combinatorial background

Extended unbinned maximum likelihood fit with two components (right plot):

- DSCB for $B_c^+ \rightarrow J/\psi \pi^+$ signal
- Exponential function to describe combinatorial background

- We obtain $N_{B_c^+ \to J/\psi D_s^+} = 28.9 \pm 5.6$ (stat) and $N_{B_c^+ \to J/\psi D_s^{*+}}/N_{B_c^+ \to J/\psi D_s^{*+}} = 2.37 \pm 0.56$ (stat)
- Excess of more than 9 standard deviations for both channels

$B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ (arXiv:1304.4530)

Systematics summary table

Source	Uncertainty (%)	
Simulated efficiencies	1.0	
Trigger	1.1	
Fit model	1.8	
Track reconstruction	2×0.6	
Hadron interactions	2×2.0	
Track quality selection	2×0.4	
Kaon identification	3.0	
B_c^+ lifetime	1.0	
Stability for varous data taking conditions	2.5	
${\cal B}(D^+_s o ({\cal K}^- {\cal K}^+)_\phi \pi^+)$	5.6	
Total	8.4	

Final LHCb result

 $\begin{array}{l} \frac{\mathcal{B}(B_c^+ \to J/\psi \, D_s^+)}{\mathcal{B}(B_c^+ \to J/\psi \, \pi^+)} = 2.90 \pm 0.57 \ (\mathrm{stat}) \pm 0.24 \ (\mathrm{syst}) \\ \frac{\mathcal{B}(B_c^+ \to J/\psi \, D_s^{++})}{\mathcal{B}(B_c^+ \to J/\psi \, D_s^{++})} = 2.37 \pm 0.56 \ (\mathrm{stat}) \pm 0.10 \ (\mathrm{syst}) \\ m_{B_c^+} = 6276.28 \pm 1.44 \ (\mathrm{stat}) \pm 0.36 \ (\mathrm{syst}) \ \mathrm{MeV}/c^2 \end{array}$

$B_c^+ \rightarrow B_s^0 \pi^+$ (LHCb-PAPER-2013-044)

Observation of the decay $B_c^+
ightarrow B_s^0 \pi^+$

- No B⁺_c decay where the b quark is acting as a spectator has ever been observed
- Predictions for $\mathcal{B}(B_c^+ o B_s^0 \pi^+)$ cover a broad range
- Experimental confirmation is needed
- Using both the 2011 data (1 fb⁻¹ at $\sqrt{s} = 7$ TeV) and 2012 data (2 fb⁻¹ at $\sqrt{s} = 8$ TeV)
- The B_s^0 are reconstructed either in $B_s^0 \rightarrow J/\psi \phi$ or $B_s^0 \rightarrow D_s^- \pi^+$ with $\phi \rightarrow K^+ K^-$ and $D_s^- \rightarrow K^+ K^- \pi^-$

• Boosted Decision Tree (BDT) selection

$B_c^+ \rightarrow B_s^0 \pi^+$ (LHCb-PAPER-2013-044)

 B_s^0 candidates: extended unbinned maximum likelihood fit

- Signals described with double Crystal Ball functions
- Combinatorial background modeled with exponential function
- Other background described with shapes taken from simulation

In total we reconstruct

- 103'760 \pm 380 in the $B^0_s \rightarrow J\!/\psi\,\phi$ channel
- 73'700 \pm 500 in the $B^0_s \rightarrow D^-_s \pi^+$ channel

$B_c^+ ightarrow B_s^0 \pi^+$ (LHCb-PAPER-2013-044)

 B_c^+ candidates: extended unbinned maximum likelihood fit

- Signal described with double Crystal Ball functions with parameters taken from simulation
- Combinatorial background modeled with exponential function
- Two other background described with a single Gaussian each with fixed parameters

Signal yield of

• 64 ± 10 for $B_c^+ \to B_s^0 (\to D_s^- \pi^+) \pi^+$ (significance of 7.7 σ) • 35 ± 8 for $B_c^+ \to B_s^0 (\to J/\psi \phi) \pi^+$ (significance of 6.1 σ)

Systematics summary table

Source	$D_{s}^{-}\pi^{+}$ (%)	$J\!/\psi\phi$ (%)
B_s^0 fit model	3.0	1.2
B_{c}^{+} mean mass	—	2.0
B_{c}^{+} mass resolution	—	5.2
B_c^+ signal model	1.5	1.7
Combinatorial background model	1.8	0.3
Partially reconstructed background	1.8	1.7
Data-simulation difference	3.7	3.7
B_c^+ lifetime	$^{+6.8}_{-3.5}$	7.4
Total	$^{+9.2}_{-7.1}$	10.4

Final LHCb result

$$\frac{\sigma(B_c^+)}{\sigma(B_s^0)} \times \mathcal{B}(B_c^+ \to B_s^0 \pi^+) = (2.38 \pm 0.35 \text{ (stat)} \pm 0.11 \text{ (syst)}_{-0.12}^{+0.17} (\tau_{B_c^+})) \times 10^{-3}$$

Using approximate estimate of $\sigma(B_c^+)$ over $\sigma(B_s^0)$ of 0.02, one obtains a value for $\mathcal{B}(B_c^+ \to B_s^0 \pi^+) \approx 10\%$

Even using the lower estimate, it is the largest exclusive branching fraction of any known weak ${\cal B}$ meson decay

The LHCb experiment shed light on many aspects related to b-hadron production and spectroscopy as illustrated by the recent results about B_c^+ mesons

- First observation of $B_c^+ \rightarrow J/\psi K^+$
- $\,\circ\,$ First observation of $B_c^+ \to J\!/\psi\,D_s^+$ and $B_c^+ \to J\!/\psi\,D_s^{*+}$
- First observation of $B_c^+ o B_s^0 \pi^+$

New results and measurements keep coming as 2011 and 2012 data are analysed

Thank you for your attention

FRANK ST. NEW NI.

BACKUP SLIDES

LHCb data taking conditions

LHCb Integrated Luminosity pp collisions 2010-2012

 $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ (arXiv:1304.4530)

Good agreement between background subtracted data (red points) and simulation (blue histogram) for the $\chi^2_{fit}(B_c^+)$ and $\chi^2_{IP}(B_c^+)$ distributions

The background was subtracted using the sPlot technique