Reactor-based Anti-neutrino Experiments

Kam-Biu Luk University of California, Berkeley

Windows on the Universe, Quy Nhon, Vietnam 15 August 2013

Overview

- Reactor anti-neutrino experiments have significant impacts on the study of neutrinos:
 - The first observation of (anti)neutrino in 1956
 - Low-energy anti-neutrino interaction
 - Neutrino magnetic moment
 - $sin^2 \theta_W$ at low Q^2
 - Investigation of neutrino oscillation
 - First observation of disappearance of \overline{v}_e
 - Determination of θ_{13}
 - Mass hierarchy
 - Reactor \overline{v}_e anomaly

Importance of θ_{13}

• It was the last unknown neutrino mixing angle that is the gateway to CP violation in the neutrino sector: $P(v_u \rightarrow v_e) - P(\overline{v}_u \rightarrow \overline{v}_e) \propto \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$

Measure θ_{13} With A Reactor

• Look for \overline{v}_e disappearance:

$$P(\overline{\nu}_e \to x) \approx \frac{\sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)}{4E} + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

Relative measurement using the near-far detectors greatly reduce systematic uncertainties.

Reactor-based θ_{13} Experiments

Experiment Power (GW _{th})	Baseline (m) Near/Far	(†) Near/Far	(mwe) Near/Far
Daya Bay 17.4	(470,576)/1650	(40,40)/80	(250,265)/860
Double Chooz 8.5	400/1050	8.3/8.3	120/300
RENO 16.5	409/1444	16.5/16.5	120/450

Detecting Reactor \overline{v}_e

Inverse β -decay reaction (IBD) in Gd-loaded liquid scintillator:

$$\overline{v}_{e} + p \rightarrow e^{+} + n \text{ (prompt signal)}$$

$$\stackrel{\sim 180\mu s}{\rightarrow} + p \rightarrow D + \gamma(2.2 \text{ MeV}) \text{ (delayed signal)}$$

$$\stackrel{\rightarrow + Gd}{\rightarrow} + Gd \rightarrow Gd^{*}$$

$$\stackrel{\sim 30\mu s}{\text{for } 0.1\% \text{ Gd}} \stackrel{\smile}{\rightarrow} Gd + \gamma's(8 \text{ MeV}) \text{ (delayed signal)}$$

• Energy of \overline{v}_e is given by:

 $E_v \approx T_{e^+}$ + 1.8 MeV

6-Antineutrino Detector (AD) Run

EH1: Data taking began on 15 Aug 2011

EH2: Data taking began on 5 Nov 2011

EH3: Data taking began on 24 Dec 2011

Side-by-side Comparison of ADs

Unique to Daya Bay: Multiple detectors in each hall allows cross-checks and detailed comparison of performance.

AD1 & AD2 in EH1 have identical response & energy spectra Nucl. Instru. Meth. A685, 78 (2012)

Response of all 6 ADs to spallation neutrons constrains the largest uncorrelated systematic uncertainty

Double Chooz

$sin^22\theta_{13}$ From Double Chooz

Measure $sin^2 2\theta_{13}$ by fitting rates and energy spectra of positrons using the far detector

Reactor-off Results

- Unique to Double Chooz.
- Periods with both reactors off:
 - 0.84 days in October 2011; 6 days in June 2012
- Allowed to measure background directly.
- Carried out a combined rate-only analysis:

Summary of Double Chooz Results

- Based on rate+shape analyses:
 - Gd-capture samples:
 - H-capture samples:
- $sin^2 2\theta_{13} = 0.109 \pm 0.039$ $sin^2 2\theta_{13} = 0.097 \pm 0.048$
 - Combined results: $sin^2 2\theta_{13} = 0.109 \pm 0.035$
- Based on rate+only analyses including reactor-off data:
 - Gd-capture samples:
 - $\sin^2 2\theta_{13} = 0.10 \pm 0.04$
 - H-capture samples: $sin^2 2\theta_{12}$
 - Combined results:
- $\sin^2 2\theta_{13} = 0.13 \pm 0.07$
 - $sin^2 2\theta_{13} = 0.097 \pm 0.035$
- All results are consistent.

$sin^2 2\theta_{13}$ From RENO

First result in April 2, 2012.

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat) \pm 0.019(syst)$

A new result reported in March, 2013.

 $\sin^2 2\theta_{13} = 0.100 \pm 0.010(stat) \pm 0.015(syst)$

Global Landscape of $sin^2 2\theta_{13}$

- G.L. Fogli et al., "Evidence of θ₁₃ > 0 from global neutrino data analysis," Phys. Rev. D 84 (2011) 053007 arXiv:1106.6028
- 2 K. Abe et al., "Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam," Phys. Rev. Lett. 107 (2011) 041801, arXiv:1106.2822
- 3 P. Adamson *et al.*, "Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS," Phys. Rev. Lett. 107 (2011) 181802, arXiv:1108.0015
- 4 Y. Abe et al., "Indication of Reactor ν
 e Disappearance in the Double Chooz Experiment," Phys. Rev. Lett. 108 (2012), 131801, arXiv:1112.6353
- 5 F. P. An *et al.* "Observation of electron-antineutrino disappearance at Daya Bay," Phys. Rev. Lett. **108** (2012), 171803, arXiv:1203.1669
- 6 J. K. Ahn et al. "Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment," Phys. Rev. Lett. 108 (2012) 191802, arXiv:1204.0626
- 7 K. Sakashita, "Results from T2K," presented at ICHEP 2012 in Melbourne. Available at T2K.org
- 8 Y. Abe et al. "Reactor electron antineutrino disappearance in the Double Chooz experiment," Phys. Rev. D86 (2012) 052008, arXiv:1207.6632
- 9 F. P. An et al. "Improved measurement of electron antineutrino disappearance at Daya Bay," Chinese Phys. C37 (2013) 011001 arXiv:1210.6327
- Y. Abe et al. "First Measurement of θ₁₃ from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment," Phys.Lett. B723 (2013) 66-70 arXiv:1301.2948
- S.-H. Seo, "New Results from RENO", presented at NuTel 2013 in Venice. Available at NuTel2013

What is Up With Daya Bay?

Started data taking with all eight ADs on 19 Oct 2012.

Rate+shape Analyses

- Improve understanding of the energy response of ADs.
- Carry out rate+shape analyses
 - with the entire 6AD data set
 (24 Dec 2012 28 July 2013)
 - update sin^22 θ_{13} and first measurement of Δm^2_{ee}

• Results will be released soon.

 $\Delta m_{ee}^2 \approx \Delta m_{31}^2 \cos^2 \theta_{12} + \Delta m_{32}^2 \sin^2 \theta_{12}$

Scientific Goals of Daya Bay

- Precise measurement of sin²20₁₃
 - final precision ≈ 0.003
- Precise measurement of Δm²_{ee}
 - final precision $\approx 0.08 \times 10^{-3} \text{ eV}^2$
- Precise measurement of reactor v_e flux and energy spectrum
 - address reactor \overline{v}_e anomaly
- Search for supernova neutrinos
 - about to join SNEWS

Prospects Of Double Chooz

- Completion of near detector: spring 2014.
- First result using the near and far detectors towards the end of 2014.
- The final precision of $\sin^2 2\theta_{13}$ will be ~10%.

Plan of RENO

- Precise measurement of $sin^2 2\theta_{13}$
 - final precision ≈ 0.007
- Precise measurement of Δm_{ee}^2
- Precise measurement of reactor \overline{v}_e flux and energy spectrum
- Study of reactor \overline{v}_e anomaly and sterile neutrinos

Precision Measurement of $sin^2 2\theta_{13}$: Impacts

- Check the unitary condition of the neutrino mixing matrix.
- Reduce uncertainties in predicting neutrino phenomena.
- Constrain model building.
- Extend CP reach of long-baseline accelerator experiments:

56 Japanese nuclear reactors

allowed better determination of background

Improved θ_{12} From KamLAND

- Precision of $\tan^2\theta_{12}$ is improved by 20%
- arXiv: 1303.4667
- Watanabe, NuTel 2013

The Mass Hierarchy Problem

 Require for removing ambiguities in other key neutrino studies: v mode run v mode run

Can't tell which is the correct answer for δ if mass hierarchy is unknown !

Tackling Mass Hierarchy With Reactor \overline{v}_e

• The survival probability of \overline{v}_e is given by:

$$P(\overline{v}_{e} \rightarrow \overline{v}_{e}) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2}L}{4E}\right)$$

$$P_{31} = \cos^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$

$$P_{32} = \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right)$$

$$P_{32} = \sin^{2} \theta_{12} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{32}^{2}L}{4E}\right)$$

$$Inverted hierarchy$$

$$L = 60 \text{ km}$$

$$\sin^{2} 2\theta_{13} = 0.1$$

$$L = 60 \text{ km}$$

$$\sin^{2} 2\theta_{13} = 0.1$$

$$L = 60 \text{ km}$$

$$\sin^{2} 2\theta_{13} = 0.1$$

$$L = 60 \text{ km}$$

$$\sin^{2} 2\theta_{13} = 0.1$$

Requirements

- Requirements:
 - High statistics
 - powerful nuclear reactors with proper orientation w.r.t. the detector
 - a large detector
 - Excellent energy measurement
 - energy resolution : better than 3%/JE
 - · accurate determination of the energy scale

JUNO

X. Li, this meeting

Status & Plan of JUNO

- Received funding for R&D & conceptual design in China.
- Geotechnical survey will be done by the end of summer.
- Detailed civil design underway.
- R&D on
 - prototyping detector
 - LAB-based liquid scintillator
 - photo-detectors
 - readout electronics
- Detector design underway.
- Form collaboration by the end of 2013.
- Begin data taking in 2020.

Scientific Potential of JUNO/RENO-50

- Resolve the mass hierarchy
 - ~4 standard-deviation discrimination in 6 years
- Precision determination of neutrino-mixing parameters

	Current fractional precision	JUNO/ RENO-50
$sin^2 2\theta_{12}$	5%	0.7%
$sin^2 2\theta_{23}$	5%	NA
$sin^2 2\Theta_{13}$	10%	~15%
Δm^2_{21}	3%	0.6%
Δm^2_{31}	5%	0.6%

- Search for supernova neutrinos
 - ~5000 events for supernovae occur at 8 kpc
- Study geo-neutrinos
 - ~1000 events in a 5-year run

Reactor Antineutrino Anomaly

- Reactor antineutrino flux at short distance is 6% smaller
 - New calculations yielded 3% more flux
 - Mention etal., PRD83(2011)054615 and update (2012)
 - Huber PRC84(2011)024617
 - Included contributions from long-lived isotopes
 - Measured neutron lifetime has decreased, leading to larger σ (IBD).

- Re-analyses of 19 measured fluxes using $\sin^2 2\theta_{13} = 0.089$
 - R = 0.959±0.028 (1.4 standard deviations) [Zhang et al., PRD87,073018]
 - R = 0.93±0.022 (> 3 standard deviations) [Saclay]
- Need further investigation.

Sterile Neutrino As A Solution

- Reactor anti-neutrino anomaly may be due to sterile-neutrino oscillation with $\Delta m^2 \sim 1 \text{ eV}^2$:
 - Observed/predicted averaged event ratio: R=0.927±0.023 (3.0 g)

Search For Sterile Neutrino

- Very short baseline reactor neutrino-oscillation experiments:
 - Nucifer (~7m from Osiris research reactor at Saclay taking data)
 - DANSS (~7-12m from the core of Kalinin NPP prototyping)
 - Stereo, Solid (~8m at ILL)

Summary

- Nuclear reactors are excellent tools and have played a key role for studying neutrino physics.
- Current generation of reactor antineutrino experiments are essential for precision determination of the mixing parameters θ_{12} , θ_{13} , Δm^2_{21} , and Δm^2_{ee} .
- Next generation of reactor antineutrino experiments will address the mass hierarchy problem in the next decade.
- Investigation of the reactor \overline{v}_e anomaly might lead to a surprise existence of sterile neutrino.
- The future of reactor antineutrino experiment is bright!