Direct Dark Matter Search with XENON

Manfred Lindner

→ Results of XENON100 and status of XENON1T

on behalf of the XENON Collaboration

Windows on the Universe, Qui Nhon, Vietnam, Aug. 12-17, 2013

The XENON Collaboration

University of California Los Angeles Universität Bern Rice University Houston Purdue University Columbia University New York Universidade de Coimbra Subatech Nantes NIKHEF Amsterdam Willhelms Universität Münster J. Gutenberg-Universität Mainz Max-Planck-Institut Heidelberg Universität Zürich Laboratori Nazionali del Gran Sasso INFN e Università di Bologna Weizman Institute Rehovot

Source and Detector Location

- solar system ~8.5kpc from the GC...
- ...moving towards Cygnus
 "WIMP wind" <v> ~ 220 km/s
 flux (dispersion, modulation, ...)
- tiny x-sections → very rare events
 sufficiently big targets (detectors)
 very clean detection environment

Gran Sasso underground lab → shielding

- Discrimination of e⁻/γ and nuclear recoils: (S2/S1)_{n,WIMP} < (S2/S1)_{e,γ} > 99% ER rejection
- 3D position: drift time →z (<0.3mm); PMT pattern → x,y (<3mm)
 → precise fiducial inner volume (avoid BG in outer volume)
- Discrimination of single/multiple scattering

→ further background reduction

M. Lindner MPIK

242 low activity PMTs 1x1" (Hamamatsu R8520, QE>32% @175nm

gamma event localized

Top PMT array

- 161kg Xe, 62kg target
- 30cm drift length
- radio-purity
 → material screening
- ⁸⁵Kr
 - →distillation column
- ²²²Rn emanation
 - \rightarrow avoid/monitor
- passive shielding: water, lead, PE, copper

The TPC at Work

Fiducialization and BG Reduction

Optimization of fiducial volume with Monte Carlo: good background rejection efficiency ←→ target mass

Detailed Background Understanding

PRD 83, 082001 (2011)

- MC simulations and background in good agreement
- Background very well understood in full energy range
- $5 \le 10^{-3} \text{ evts/kg/keV/d}$ after the veto cut
 - → achieved design goal of factor 100 lower than in XENON10! (and than any other search...)

ER/NR Calibration

Regular calibrations with LEDs and sources
 Position dep. Corrections

ER calibration: ⁶⁰Co, ²³²Th → Electron Recoil Band

NR: AmBe calibration at beginning and end of run

→ definition of WIMP search region
 → Discrimination power: 99.5% at low energies for 50% acceptance

Blind WIMP Analysis

Data below the 10% quantile of the e-recoil band were blinded
→ cuts: calibration data and background events outside WIMP region

Selection cuts:

- Data quality
 - only stable detector periods, ...
- Energy cuts
- Single event selection
- Consistency
- NR/ER discrimination
- Event inside fiducial volume

<u>Cut based analysis \rightarrow profile likelihood based on all events:</u>

- full energy information, no discrimination
- incorporate calibration information (data, simulation, errors)
- include systematic uncertainties (L_{eff} , ...)
- smooth transition between rejection / discovery

Results from 225 Live Days (Run 10)

The two events have good quality by visual inspection

Position of the two events in the

→ improved WIMP limits

XENON100 Spin Independent Exclusion Limit

Phys. Rev. Lett. 109 (2012) 181301

- best spin independent DM limit: 2 x 10⁻⁴⁵cm² at 50 GeV/c²
- excludes part of the predicted region for SUSY candidates
- excludes other WIMP evidences

XENON100 Spin Dependent Exclusion Limits

Phys. Rev. Lett. 111, 021301 (2013)

- 2 isotopes with nonzero spin: ¹²⁹Xe (26.2%) and ¹³¹Xe (21.8%)
- nuclear model (Menendez et al. Phys. Rev. D86, 103511, 2012)
- σ = 3.5 x 10⁻⁴⁰ cm² for a 45 GeV WIMP mass and neutron coupling at 90% CL

→ best limits for 'neutron' ; competitive limits for 'proton'

What XENON100 would see if...

Assume "CoGeNT"

Assume: "CRESST"

Assume "CDMS"

Nuclear Recoil equivalent Energy

S1 \leftarrow > nuclear recoil energy: $E_{NR} = S_1/L_y/L_{eff} \times S_e / S_r$ S₁: in p.e.

 L_y : LY for 122 keV γ in p.e./keV

 S_e/S_r : quenching for 122 keV γ /NR due to drift field

Verification of Nuclear Recoil Energy Scale

→ XENON100 nuclear recoil energy scale including all measurements of direct neutron scattering experiments

Monte Carlo simulation of neutron source: PRD 88, 012006 (2013)

- Input AmBe spectrum (ISO 8529-1 standard). Analysis robust against variations of this spectrum
- Source strength measurement (PTB): (160 ± 4) n/s
- Complete Monte Carlo description of the detector including detector shield (water, lead, polyethylen and copper)
- *E_{dep}* is converted to S1 and S2 including thresholds, resolutions and acceptances from data

MC Simulation of Neutron Source

Step 1: Use L_{eff} from direct measurements

→ reproduce S2 spectrum → obtain optimal Q_y
Step 2: Use obtained Qy
→ reproduce S1 spectrum → obtain a new L_{eff}

Best fit for source strength: 159 n/s $\leftarrow \rightarrow$ fits perfectly to PTB source measurement

- Poor agreement below 2PE due to unknown efficiencies below threshold
- Best fit L_{eff} matches perfectly to previous measurements and theoretical calculations
- Consistency strengthens reliability of analysis
 Limits of XENON100 are confirmed

The Future: XENON1T

→ sensitivity goal: σ < 2 x 10⁻⁴⁷ cm² for M_{WIMP}=50 GeV after 2t*year

XENON1T Background Suppression

Requirement: < 1 event in the full exposure

- External γ's:
 - suppression via self-shielding ($\rho_{LXe}\sim 3g/cm^3)$
 - material screening and selection
- Internal BGs (²²²Rn and ⁸⁵Kr)
 - cryogenic distillation column (Kr)
 < 1 ppt nat. Kr achieved in XENON100
 - online Rn removal by Rn tower
- Neutrons
 - muon veto and material selection
 - low U and Th contaminations
 - \rightarrow low α and (α ,n) production

Example: Development of low radioactivity PMTs with Hamamatsu <1mBq/PMT in U and Th Muon veto design

Background rejection power: > 99.5% neutrons with a μ tagged in the veto

XENON1T Status

- funding in place
- Xenon purchased
- construction started in June 2013 @ hall B, LNGS
- First: support building
- Next: water tank, ...

- in parallel finalizing detector design
- & construction of components:
- teflon UV reflector
- high transparent meshes
- cooling (pulse tube refrigerators)
- Purification rate~100s.l.p.m.
- 1m drift of e- demonstrated
- 100kV HV demonstrated

Summary

> WIMP scattering off nuclei (SI):

- XENON100 excludes the current indications of DM
- Strongest exclusion limits 2 x 10⁻⁴⁵ cm² for 50 GeV
- Nuclear recoil energy scale verified with MC/data comparison
 of an AmBe neutron source
 - \rightarrow reliable $L_{\rm eff}$, complete understanding of NR acceptance

> Limits on spin dependent (SD) scattering

• Strongest limits for n and competitive for p

> XENON1T:

- Construction has started in June 2013
- Sensitivity goal: $2 \times 10^{-47} \text{cm}^2$ for $M_{\text{WIMP}} = 50 \text{ GeV}$
- Ongoing optimisation of TPC design
- Planned start of science run: early 2015