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GW – Ripple in space-time

● Gravitational waves are propagating solutions to Einstein equation in GR 
('ripples in space-time')

● Emission from rapidly accelerating mass distributions (quadrupolar 
momentum)

● Need relativistic objects to maximize emission strength
● Propagation at speed of light with 2 polarizations

● Physically, gravitational waves are strains : 

● Kilometric interferometers are the most sensitive device so far
● Sense of scale : neutron stars merging at 50 Mly 

f
orb

 = 400 Hz

M = 1.4 M⊙
R =20 km
r = 50 Mly
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GW- Challenges

Searching for gravitational waves with ground based detectors is a cross-
road of science frontiers:

General relativity: relativistic & 
compact objects (strong field 
relativity tests). 

Astrophysics of compact objects: 
black holes & neutron stars with 
matter effects. Most energetic objects 
in the Universe.

Cosmology: reach cosmological 
distances for black hole GW 
sources. 

Laser interferometric detectors: first 
generation of detectors has proven 
technology works. Second generation 
should be more sensitive by 1 order of 
magnitude.

Data analysis: how to extract low signal-to-noise ratio 
signals in high dimensional parameter space & in non-
Gaussian/non-stationary data environment. 
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GW searches zoology

Short duration (~1s) Long duration (∞)

Rotation-driven 
instabilities

???

Waveform 
known

Waveform 
unknown

???
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Multi-messenger astronomy

GRB

SGR/AXP

Giant flare

Type II 
supernova

Pulsar glitch

HE (>1 TeV) ν

LE (MeV) ν

 γ-rays

X-rays

Optical/IR radio
→ probing the progenitor structure
→ probing the stellar density
→ ruling out models
→ Astrophysics measurements: 
Hubble constant, GW speed, ...
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Network of ground based detectors

G1: 600 m 
GEO

L1: 4 km

V1: 3 km

● Increase the detection confidence 
● Source sky localization
● Source parameters inference
● GW polarization determination
● Astrophysics of the sources

Since 2007, LIGO, GEO & 
Virgo data are jointly 
analyzed by the LIGO 
Scientific Collaboration and 
the Virgo Collaboration. 

H1& H2: 4  km
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GW detectors' sensitivities

Best noise spectrum achieved
by LIGO Hanford, LIGO 
Livingston and Virgo.

30 Hz  / 50 Hz – 2 kHz  bandwidth

Sky localization :
 tens of square degrees

Range of detections
for binary neutron stars :
40 Mpc - LIGO
20 Mpc - Virgo
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Compact binary systems

Daniel Price (U/Exeter) and Stephan Rosswog 
(Int. U/Bremen)
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GWs from coalescing compact binary systems
(NS/NS, NS/BH, BH/BH) 

What can LIGO-Virgo detect? The last minutes of the coalescence, the 
merger and the ring-down for a certain regime of masses [1 M⊙ – 400 M⊙]

[Credit: GWAL NASA's Goddard Space Flight Center]

Unique way to study strong field GR, 
nuclear matter effects in extreme 
conditions (NS tidal disruption)

Complete (inspiral, merger, ringdown) 
waveforms available 

→ template bank matched filtering 
search
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S6/VSR2-3 low mass CBC search

● Search for 2-25         total mass CBC

● PN restricted waveforms

● No evidence for a GW signal

● 90% upper limits on the events rate

NSNS:  1.3 x 10-4  Mpc-3 yr-1

NSBH: 3.1 x 10-5  Mpc-3 yr-1

BHBH: 6.4 x 10-6 Mpc-3 yr-1

Still 2 orders of magnitude 
above “realistic” rate

Phys. Rev. D 85, 082002 (2012)

BH: 5  

BH: 10  
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Un-modelled burst searches

1987A supernova seen by Hubble telescope

George Sonneborn (Goddard Space Flight 
Center), Jason Pun (NOAO), the STIS 
Instrument Definition Team, and NASA/ESA

http://www.nasa.gov/
http://www.esa.int/
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“Un-modelled” GW transient searches

All-sky/all-time searches: to get all kind of short (<1s) GW signals 
happening any time: core collapse supernova, intermediate black hole 
mergers, still unkown source ... 

Triggered searches:

➢ GRB: 39 GRBs during S2/S3/S4, 137 during S5/VSR1, 150 during 
S6/VSR2+3, GRB 030329, GRB 070201, GRB 051103.

➢ Magnetar flare GW burst searches: SGR 1806–20 giant flare QPO search, 
SGR 1900+14 storm “stack” search. GW bursts from flares emitted by six 
different magnetars.

➢ Bursts associated with (Vela) pulsar glitches.
➢ Burst associated with core collapse supernovae.
➢ Burst associated with high-energy neutrinos.
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Search sensitivity in energy units

GW energy emission assuming a Galactic source (10 kpc) that could have been 
detected with 50% efficiency 

d=10 kpc → EGW ~10-8 Msun c2 → CCSN
d=15 Mpc →  EGW =10-1 Msun c2 → BBH

Phys. Rev. D 85 (2012) 122007 
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GW transient triggered searches
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Triggered searches: GRB-GW searches

● Study ~300 GRBs since 2003 (Swift & Fermi mainly)

● Long-soft GRB – GW “un-modelled” burst search

● Possible “collapsar” progenitor → poorly modelled.
● Strongly beamed + rotation → circularized polarized.
● 150 GCN long GRBs in 2009-2010 data.

● Short-hard GRB – GW NSNS and NSBH search

● Possible binary merger progenitors → NSNS and NSBH waveforms.
● Beamed?
● 26 GCN short GRBs in 2009-2010 data.

GRB trigger

-5 s   +1s
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GRB-GW searches – results & prospectives
Astrophys. J. 760, 12 (2012)

No subset of the most significant 
GRB stands out compared to the 
background.

Short-hard GRB: with advanced detectors, 
we will be sensitive to events seen by EM 
observations!   

burst Binary
Coalescencex10 sensitivity

x5 GRBs
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GRB 070201 / GRB 051103
 Astrophys. J. 755, 2 (2012) / Astrophys. J. 681, 1419 (2008)

● Short GRBs search.

➢ GRB 070201 overlaps M31 (0.77 Mpc).

➢ GRB 051103 overlaps M81 (~3.6 Mpc).

● No GW found.

➢ Binary coalescence in M31 excluded at 99% CL 
and 98% CL in M81.

● Observations compatible with:

➢ SGR giant flare in M31/M81.

➢ Coalescence in galaxy behind M31/M81. 

Significant non-detection results
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Continuous GW searches
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Pulsars and continuous GW sources

● GW emission: time-varying quadrupole can be generated by

● Non-axisymmetric deformation (elastic stress and/or magnetic fields in NS 
crust/core).

● GW driven instabilities of normal oscillation modes (r-modes, f-modes CFS). 

● Matter accretion.

● GW signal: long-lasting (permanent) quasi-monochromatic signals at f=2frot 
(or frot). Typical amplitude:

● Theoretical maximal values for ε:

● Actual values?: ms pulsars low period derivatives observations → ε < 10-8   

Normal matter: ε ≤ 10-7 – 10-6

Quark matter:   ε ≤ 10-5 – 10-4
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Continuous wave searches

Cas A / Chandra 

Targeted searches: Crab, Vela, etc ... 

Directed searches: known position, 
                              unknown frequency 

All-sky searches: wide parameter space
The presence of a companion adds complexity!
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Continuous waves: targeted searches

● ~120 (young) pulsars have been studied in LIGO/Virgo data

● Upper limit on the GW strain have been derived:

➢ Spin-down upper limit has been beaten for few pulsars:

➢ Lowest upper-limit on amplitude: 2.3 x 10-26  (PSR J1603-7202) 

➢ Lowest upper-limit on ellipticity: 7.0 x 10-8     (PSR J2124-3358)

Astrophys. J. 737 (2011) 93, Astrophys. J. 713 (2010) 671



24

Stochastic GW background searches
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Stochastic GW background searches

+
Unresolved astrophysical

GW emission

The SGWB analyses probe the 
history of the universe …

What do we try to measure?

How? 

Correlation between pairs of 
detectors
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Stochastic GW background: isotropic search results

● LIGO S5 only observations (most 
sensitive at low frequency)

● LIGO S5 limit Ω
GW

< 6.9 x 10-6 (41-

169 Hz, α=0), a result that improves 
on the indirect limits from Big Bang 
Nucleosynthesis (BBN) and CMB.

● LIGO S5, Virgo VSR1 limit (test of 
high frequency region) 

    Ω
GW

= Ω
3
(f/900Hz)3 

    Ω
3
 < 0.32 (600-1000 Hz, α=3)

Nature 460 (2009) 990, PRD 85 (2012) 122011
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The GW detectors networks in the next decade

H1: 4  km G1: 600 m 
GEO

L1: 4 km

V1: 3 km

4 km in 2020

LIGO India

3 km in 2017
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Advanced detectors sensitivities

distance x 10 → volume x 103 

arXiv:1304.0670
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Compact binary rate expectation

@ designed sensitivity : ~40 BNS / year 

ArXiv:1304.0670 + CQG 27 173001 (2010)
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Compact binary rate expectation

First discovery in 2016?
Need to be lucky for
EM follow-up ?

ArXiv:1304.0670 + CQG 27 173001 (2010)
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Advanced LIGO/Virgo sky localization

BNS source @ 80 Mpc

BNS source @ 160 Mpc

2016-2017 runs 2018-2019 runs

2019+ runs HLV + LIGO India 2022+
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Electromagnetic follow-ups to GW triggers

Analyze GW data promptly to identify possible event candidates and reconstruct 
their apparent sky position → send alerts to telescopes

QUEST

TAROT

Swift

QUEST

Try to capture an EM transient that would 
otherwise have been missed!
First tests during S6/VSR3 runs

Other telescopes...

ApJ. L. 734:L35 (2011)



34

Conclusion: beyond the first detection

● Source parameter estimation/inverse problem:

● All sources concerned (compact binaries, core collapse, stochastic, pulsar...)

● Derive information about the progenitors (GRB engine, NS), effect of matter, 
EOS...

● Infer source rate  

● Test of General Relativity

● No hair theorem

● Test of PostNewtonian approximation (inspiral phase)

● GW speed measurement

● Hubble constant measurement (not as precise as CMB, but independent)

● Low latency transient GW searches with electro-magnetic follow-ups

 Very exciting coming years … with great detectors!
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Backup
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Adding Kagra to the newtork

5 sites network :
Slightly better localization
Better sensitivity
Increase duty cycle !
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