

Windows on the universe :

Gravitational wave sky and recent results from ground based detectors

Nicolas Leroy, LAL CNRS/Université Paris-Sud

for the LIGO Scientific Collaboration and the Virgo Collaboration

Outline

Selected results

Future prospects The network extension Schedule

GW – Ripple in space-time

- Gravitational waves are propagating solutions to Einstein equation in GR ('ripples in space-time')
 - Emission from rapidly accelerating mass distributions (quadrupolar momentum)
 - Need relativistic objects to maximize emission strength
- Propagation at speed of light with 2 polarizations

- Physically, gravitational waves are strains $h = \delta I/L$
 - Kilometric interferometers are the most sensitive device so far
 - Sense of scale : neutron stars merging at 50 Mly

$$f_{orb} = 400 \text{ Hz}$$

$$M = 1.4 \text{ M}\odot$$

$$R = 20 \text{ km}$$

$$r = 50 \text{ Mly}$$

$$h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{c^4 r} \implies h \sim 10^{-21}$$

GW- Challenges

Searching for gravitational waves with ground based detectors is a crossroad of science frontiers:

General relativity: relativistic & compact objects (strong field relativity tests).

Laser interferometric detectors: first generation of detectors has proven technology works. Second generation should be more sensitive by 1 order of magnitude.

Cosmology: reach cosmological distances for black hole GW sources.

Astrophysics of compact objects: black holes & neutron stars with matter effects. Most energetic objects in the Universe.

Data analysis: how to extract low signal-to-noise ratio signals in high dimensional parameter space & in non-Gaussian/non-stationary data environment.

GW searches zoology

Multi-messenger astronomy

Network of ground based detectors

- Increase the detection confidence
- Source sky localization
- Source parameters inference
- GW polarization determination
- Astrophysics of the sources

Since 2007, LIGO, GEO & Virgo data are jointly analyzed by the LIGO Scientific Collaboration and the Virgo Collaboration.

GW detectors' sensitivities

Future prospects The network extension Schedule

Searching for gravitational waves Sources Multi-messenger astronomy

Challenges Ground based detector

Selected results

Outline

Compact binary systems

Daniel Price (U/Exeter) and Stephan Rosswog (Int. U/Bremen)

GWs from coalescing compact binary systems ((NS/NS, NS/BH, BH/BH)

What can LIGO-Virgo detect? The last minutes of the coalescence, the merger and the ring-down for a certain regime of masses $[1 M_{\odot} - 400 M_{\odot}]$

Unique way to study strong field GR, nuclear matter effects in extreme conditions (NS tidal disruption)

- Complete (inspiral, merger, ringdown) waveforms available
- \rightarrow template bank matched filtering search

[Credit: GWAL NASA's Goddard Space Flight Center]

S6/VSR2-3 low mass CBC search

Phys. Rev. D 85, 082002 (2012)

- Search for 2-25 M_{\odot} total mass CBC
- PN restricted waveforms
- No evidence for a GW signal
- 90% upper limits on the events rate

BH: 5 M_{\odot}

NSNS: 1.3 x 10⁻⁴ Mpc⁻³ yr⁻¹ NSBH: 3.1 x 10⁻⁵ Mpc⁻³ yr⁻¹ BHBH: 6.4 x 10⁻⁶ Mpc⁻³ yr⁻¹

Un-modelled burst searches

1987A supernova seen by Hubble telescope

George Sonneborn (Goddard Space Flight Center), Jason Pun (NOAO), the STIS Instrument Definition Team, and NASA/ESA

All-sky/all-time searches: to get all kind of short (<1s) GW signals happening any time: core collapse supernova, intermediate black hole mergers, still unkown source ...

Triggered searches:

- GRB: 39 GRBs during S2/S3/S4, 137 during S5/VSR1, 150 during S6/VSR2+3, GRB 030329, GRB 070201, GRB 051103.
- Magnetar flare GW burst searches: SGR 1806–20 giant flare QPO search, SGR 1900+14 storm "stack" search. GW bursts from flares emitted by six different magnetars.
- Bursts associated with (Vela) pulsar glitches.
- Burst associated with core collapse supernovae.
- Burst associated with high-energy neutrinos.

Search sensitivity in energy units

Phys. Rev. D 85 (2012) 122007

GW energy emission assuming a Galactic source (10 kpc) that could have been detected with 50% efficiency

Triggered searches: GRB-GW searches

- Study ~300 GRBs since 2003 (Swift & Fermi mainly)
- Long-soft GRB GW "un-modelled" burst search
 - Possible "collapsar" progenitor \rightarrow poorly modelled.
 - Strongly beamed + rotation \rightarrow circularized polarized.
 - 150 GCN long GRBs in 2009-2010 data.

- Short-hard GRB GW NSNS and NSBH search
 - Possible binary merger progenitors \rightarrow NSNS and NSBH waveforms.
 - Beamed?
 - 26 GCN short GRBs in 2009-2010 data.

No subset of the most significant GRB stands out compared to the background.

Short-hard GRB: with advanced detectors, we will be sensitive to events seen by EM observations!

GRB 070201 / GRB 051103

Astrophys. J. 755, 2 (2012) / Astrophys. J. 681, 1419 (2008)

Significant non-detection results

- Short GRBs search.
 - GRB 070201 overlaps M31 (0.77 Mpc).
 - GRB 051103 overlaps M81 (~3.6 Mpc).
- No GW found.
 - Binary coalescence in M31 excluded at 99% CL and 98% CL in M81.
- Observations compatible with:
 - SGR giant flare in M31/M81.
 - Coalescence in galaxy behind M31/M81.

Continuous GW searches

Pulsars and continuous GW sources

- **GW emission:** time-varying quadrupole can be generated by
 - Non-axisymmetric deformation (elastic stress and/or magnetic fields in NS crust/core).
 - GW driven instabilities of normal oscillation modes (r-modes, f-modes CFS).
 - Matter accretion.
- **GW signal**: long-lasting (permanent) quasi-monochromatic signals at f=2f_{rot} (or f_{rot}). Typical amplitude:

$$h = 4 \times 10^{-25} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{I}{10^{45} \,\mathrm{g \ cm^2}}\right) \left(\frac{f}{100 \,\mathrm{Hz}}\right)^2$$

- Theoretical maximal values for ϵ : Normal matter: $\epsilon \le 10^{-7} 10^{-6}$ Quark matter: $\epsilon \le 10^{-5} - 10^{-4}$
- Actual values?: ms pulsars low period derivatives observations $\rightarrow \epsilon < 10^{-8}$

Continuous wave searches

All-sky searches: wide parameter space The presence of a companion adds complexity!

New pulsars found in a blind search Millisecond radio pulsars

Continuous waves: targeted searches

Astrophys. J. 737 (2011) 93, Astrophys. J. 713 (2010) 671

LIGO

- ~120 (young) pulsars have been studied in LIGO/Virgo data
- Upper limit on the GW strain have been derived:
 - Spin-down upper limit has been beaten for few pulsars:

Pulsar name	$h_0^{95\%}$	$\epsilon^{95\%}$	$h_0^{95\%}/h_{sd}$	Fraction of energy		
	-		_	loss due to GW emission		
Crab (29.78 Hz)	2.4×10^{-25}	$1.3 imes 10^{-4}$	0.15	< 2%		
Vela (11.2 Hz)	$2.2 - 2.4 \times 10^{-24}$	$1.19 - 1.30 \times 10^{-3}$	0.7	< 35%		

- Lowest upper-limit on amplitude: 2.3 x 10⁻²⁶ (PSR J1603-7202)
- Lowest upper-limit on ellipticity: 7.0 x 10⁻⁸ (PSR J2124-3358)

Stochastic GW background searches

Stochastic GW background searches

What do we try to measure? $\Omega_{GW}(f) = \frac{f}{\rho_c} \frac{d\rho_{GW}}{df}$ $\Omega_{GW} = A(f/f_{ref})^{\alpha}$

How?

Correlation between pairs of detectors

The SGWB analyses probe the history of the universe ...

Stochastic GW background: isotropic search results

Nature 460 (2009) 990, PRD 85 (2012) 122011

- LIGO S5 only observations (most sensitive at low frequency)
- LIGO S5 limit $\Omega_{_{GW}}$ < 6.9 x 10⁻⁶ (41-169 Hz, α =0), a result that improves on the indirect limits from Big Bang Nucleosynthesis (BBN) and CMB.
- LIGO S5, Virgo VSR1 limit (test of high frequency region)

 $\Omega_{\rm GW} = \Omega_3 (f/900 {\rm Hz})^3$

 $\Omega_{_3} < 0.32~(600\text{--}1000$ Hz, $\alpha\text{=-}3)$

Outline

light storage arm test mass light storage arm test mass beam splitter power recycling mirror laser

Searching for gravitational waves

Sources Multi-messenger astronomy Challenges Ground based detector

Selected results

Future prospects The network extension Schedule

The GW detectors networks in the next decade

Advanced detectors sensitivities

arXiv:1304.0670

distance x 10 \rightarrow volume x 10³

Compact binary rate expectation

ArXiv:1304.0670 + CQG 27 173001 (2010)

	Estimated				Number	Number % BNS		
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5\mathrm{deg}^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60		40 - 80		0.0004 - 3	-	-
2016 - 17	6 months	60 - 75	20-40	80-120	20 - 60	0.006 - 20	2	5 - 12
2017 - 18	9 months	75-90	40-50	120 - 170	60-85	0.04 - 100	1-2	10 - 12
2019 +	(per year)	105	40 - 70	200	65 - 130	0.2 - 200	3-8	8-28
2022 + (India)	(per year)	105	80	200	130	(0.4 - 400)	17	48

@ designed sensitivity : ~40 BNS / year

Compact binary rate expectation

ArXiv:1304.0670 + CQG 27 173001 (2010)

	Estimated				Number	% BNS Localized		
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 deg^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60		40 - 80		0.0004 - 3		-
2016 - 17	6 months	60 - 75	20-40	80 - 120	20 - 60	0.006 - 20		5-12
2017 - 18	9 months	75 - 90	40-50	120 - 170	60-85	0.04 - 100	1-2	10-12
2019 +	(per year)	105	40 - 70	200	65 - 130	0.2 - 200	3-8	8-28
2022 + (India)	(per year)	105	80	200	130	0.4 - 400	17	48

First discovery in 2016?

Need to be lucky for EM follow-up ?

Advanced LIGO/Virgo sky localization

BNS source @ 80 Mpc

Electromagnetic follow-ups to GW triggers

ApJ. L. 734:L35 (2011)

Analyze GW data promptly to identify possible event candidates and reconstruct their apparent sky position \rightarrow send alerts to telescopes

Conclusion: beyond the first detection

- Source parameter estimation/inverse problem:
 - All sources concerned (compact binaries, core collapse, stochastic, pulsar...)
 - Derive information about the progenitors (GRB engine, NS), effect of matter, EOS...
 - Infer source rate
- Test of General Relativity
 - No hair theorem
 - Test of PostNewtonian approximation (inspiral phase)
 - GW speed measurement
 - Hubble constant measurement (not as precise as CMB, but independent)
- Low latency transient GW searches with electro-magnetic follow-ups

Very exciting coming years ... with great detectors!

Backup

Adding Kagra to the newtork

