technische universität dortmund

Bundesministerium für Bildung und Forschung

CP violation in B decays at LHCb

Windows on the Universe (Inaugural Conference of ICISE) 11–17 August 2013 – Quy Nhon, Vietnam Florian Kruse – on behalf of the LHCb collaboration

tu

CP violation

Violation of CP symmetry:

- particles and antiparticles behave differently
- well established in Standard Model (CKM matrix → unitarity triangles)
- Why CP violation?
 - tiny matter-antimatter asymmetry resulted in matter-dominated universe
 - CPV required to explain asymmetry
 - CPV in SM not enough
- Why measure CP violation?
 - test SM by over-constraining CKM parameters
 - find contributions of Physics Beyond the Standard Model (BSM)

Sources of CP violation

MIXING CPV \overline{b} \overline{b} W^{-} W^{+} \overline{B}_{s}^{0} su, c, t \overline{s} **difference in mixing**

 $\Gamma(B(t)\to \overline{X})\neq \Gamma(\overline{B}(t)\to X)$

flavour-specific asymmetry a_{sl}

The LHCb detector

LHCb performance

- Total luminosity:
 - L_{int} ≈ 3 fb⁻¹
- Data taking efficiency: 93%
- Trigger:
 - reducing 20 MHz collision rate to 5 kHz output rate

MERCH BAGS-815 SHIRTS-810 Kids @ shirts-88 Kids @ shirts-85 I @ ay faraces aarket

CC BY-NC 2.0 an untrained eye

Presents

Direct CPV

tu

 $\begin{array}{l} B_{(s)} {\rightarrow} K \pi \\ \gamma \text{ in } B^{\pm} {\rightarrow} D h^{\pm} \end{array}$

Direct CP violation in $B_{(s)} \rightarrow K\pi$, 1 fb⁻¹

measure CP asymmetries:

$$A_{CP}(B^0 \to K^+ \pi^-) = \frac{\Gamma(\overline{B}{}^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-)}{\Gamma(\overline{B}{}^0 \to K^- \pi^+) + \Gamma(B^0 \to K^+ \pi^-)}$$
$$A_{CP}(B^0_s \to K^- \pi^+) = \frac{\Gamma(\overline{B}{}^0_s \to K^+ \pi^-) - \Gamma(B^0_s \to K^- \pi^+)}{\Gamma(\overline{B}{}^0_s \to K^+ \pi^-) + \Gamma(B^0_s \to K^- \pi^+)}$$

- CPV through interference between tree and penguin contributions
 Phys. Rev. Lett.
 - *Phys. Rev. Lett.* 110 (2013) 221601

- measurement:
 - measure raw asymmetries from mass distribution fit
 - correct raw asymmetries for instrumental and production asymmetries

Direct CP violation in $B_{(s)} \rightarrow K\pi$, 1 fb⁻¹

CP violation in B decays at LHCb | Florian Kruse

9

γ in B[±] \rightarrow Dh[±]

- In B[±]→Dh[±]
- combine various single measurements (not covered):
 - LHCb γ : GLW (D \rightarrow KK/ $\pi\pi$), ADS (D \rightarrow K $\pi/K\pi\pi\pi$), GGSZ (D \rightarrow K $_{S}\pi\pi/K_{S}KK$)
 - additional LHCb/CLEO/HFAG inputs on D parameters (mixing, hadronic parameters, CP violation)
 - total of max. 38 observables (γ, phases, ratios, ...)
- use frequentist plugin approach:
 - combine all measurements into single likelihood
 - for nearly all observables: treat stat. + syst. fluctuations as Gaussian
 - correct for undercoverage

tu

γ in B[±] \rightarrow Dh[±]

• using $B^{\pm} \rightarrow DK^{\pm}$ only, with 2012 data:

• GLW/ADS with 1 fb⁻¹ + GGSZ with 3 fb⁻¹

- combining B[±]→DK[±] and B[±]→Dπ[±]:
 - GLW/ADS/GGSZ with 1 fb⁻¹
 - incl. D mixing

arXiv:1305.2050

 $\gamma = (72.6^{+9.7}_{-17.2})^{\circ}$

Mixing CPV

Flavour-specific asymmetry $a_{sl}\ in\ B_s$

tu

Flavour-specific asymmetry a_{sl} in B_s

flavour-specific asymmetry:

$$a_{\rm sl}^s = \frac{\Gamma(\overline{B}_s^0(t) \to f) - \Gamma(B_s^0(t) \to \overline{f})}{\Gamma(\overline{B}_s^0(t) \to f) + \Gamma(B_s^0(t) \to \overline{f})} \quad \text{with } f : D_s^- X \mu^+ \nu_\mu$$

- $B_s(t)$: time evolution of particle produced as B_s at t=0
- f: flavour-specific final state only B_s can decay into
- decays only possible via B mixing
- measured quantity (time-integrated):

$$A_{\rm meas} = \frac{\Gamma(D_s^-\mu^+) - \Gamma(D_s^+\mu^-)}{\Gamma(D_s^-\mu^+) + \Gamma(D_s^+\mu^-)} = \frac{a_{\rm sl}^s}{2}$$

- corrected for reconstruction and background asymmetries
- measurement on 1 fb⁻¹

arXiv:1308.1048

Flavour-specific asymmetry a_{sl} in B_s

tu

Interference CPV

 $\begin{array}{l} B_d {\rightarrow} J/\psi K_S \\ B_s {\rightarrow} J/\psi K K \, / \, J/\psi \pi \pi \end{array}$

CP violation in interference between 👈 mixing and decay

- neutral B mesons mix through box diagrams
- ▶ light and heavy mass eigenstate: B_L, B_H
 - mass difference $\Delta m_{s,d} \Rightarrow$ oscillation frequency
 - decay width difference $\Delta\Gamma_{s,d}$
- interference CPV:
 - both flavour eigenstates (B/ \overline{B}) can decay into common final state f
 - measure time-dependent asymmetry

$$A_{CP}(t) = \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)}$$

B(t): time evolution of particle produced as B at t=0

CP violation in interference between 👈 mixing and decay

- Ingredients to measure interference CPV:
 - B production flavour \Rightarrow Flavour Tagging
 - B decay time
 - wrong-tag rate
 - decay time resolution

$$A_{CP}(t) = \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)}$$

CP asymmetry in $B_d \rightarrow J/\psi K_S$

measurement of time-dependent asymmetry:

 $A_{J/\psi K_{\rm S}^{0}}(t) = \frac{\Gamma(\bar{B}^{0}(t) \to J/\psi K_{\rm S}^{0}) - \Gamma(B^{0}(t) \to J/\psi K_{\rm S}^{0})}{\Gamma(\bar{B}^{0}(t) \to J/\psi K_{\rm S}^{0}) + \Gamma(B^{0}(t) \to J/\psi K_{\rm S}^{0})} \xrightarrow{b}{d} \xrightarrow{u, c, t} \bar{d}$ $= S_{J/\psi K_{\rm S}^{0}} \sin(\Delta m_{d} t) - C$

- in SM: direct and mixing CPV negligible: $C_{J/\psi K^0_{\mathfrak{S}}} \approx 0 \Rightarrow S_{J/\psi K^0_{\mathfrak{S}}} = \sin 2\beta$
- "golden mode" for $sin 2\beta$, world averages: $S_{J/\psi K_{S}^{0}} = 0.665 \pm 0.024$ $C_{J/\psi K_{S}^{0}} = 0.024 \pm 0.026$

CP asymmetry in $B_d \rightarrow J/\psi K_S$

result on 1 fb⁻¹ data:

 $S_{J/\psi K_{\rm S}^0} = 0.73 \pm 0.07 \,(\text{stat}) \pm 0.04 \,(\text{syst})$ $C_{J/\psi K_{\rm S}^0} = 0.03 \pm 0.09 \,(\text{stat}) \pm 0.01 \,(\text{syst})$

- ▶ first significant CPV measurement in B_d→J/ψK_S at hadron collider
- only OS tagging used

Phys. Lett. B 721 (2013) 24-31

CP violation in $B_s \rightarrow J/\psi K^+K^- / J/\psi \pi^+\pi^-$

• CP violating phase ϕ_s , standard model prediction:

$$\phi_s^{\rm SM} = -0.036 \pm 0.002 \, \rm rad$$

possible new physics (NP) in box diagrams:

$$\phi_s = \phi_s^{\rm SM} + \phi_s^{\rm NP}$$

challenges:

- $\Delta m_s = 17.8 \text{ ps}^{-1} (\Delta m_d = 0.510 \text{ ps}^{-1})$
- LHCb decay time resolution: 45 fs
- precise resolution description essential
- K⁺K⁻ via P-wave (φ(1020)) or non-resonant S-wave
- disentanglement via angular analysis

CP violation in $B_s \rightarrow J/\psi K^+K^- / J/\psi \pi^+\pi$

- combining OS+SS tagging
- data split in six bins of invariant K+K⁻ mass
 - higher statistical precision
 - resolve ambiguity in ϕ_s and $\Delta\Gamma_s$

CP violation in B decays at LHCb | Florian Kruse

Phys. Rev. D 87, 112010 (2013)

Conclusions

- ▶ with 1 fb⁻¹ of data:
 - $\phi_s, \Delta\Gamma_s, \Gamma_s$: most precise single measurement
 - SJ/WKS, CJ/WKS: most precise and first significant CP violation at a hadron collider
 - γ: LHCb competitive
 - $B_{(s)} \rightarrow K\pi$: first observation of CP violation in B_s decays
- new analyses with 3 fb⁻¹ expected soon:
 - Standard Model tests and searches for new physics ongoing

tu

Backup

LHCb facts

momentum resolution: $\Delta p / p = 0.4 \%$ at 5 GeV/c to 0.6 % at 100 GeV/c ECAL resolution (nominal):

 $1 \% + 10 \% / \sqrt{(E[GeV])}$ impact parameter resolution:

20 μm for high-pT tracks

invariant mass resolution:

~8 MeV/c^2 for B \rightarrow J/ ψ X decays with constraint on J/ ψ mass

~22 MeV/c^2 for two-body B decays

~100 MeV/c² for $B_S \to \phi \, \gamma,$ dominated by photon contribution decay time resolution:

45 fs for $B_S \,{\rightarrow}\, J/\psi\, \phi$ and for $B_S \,{\rightarrow}\, D_S\, \pi$

percentage of working detector channels: ~ 99 % for all sub-detectors data taking efficiency: > 90 % data good for analyses: > 99 % trigger efficiencies: ~ 90 % for dimuon channels ~ 30 % for multi-body hadronic final states track reconstruction efficiency: > 96 % for long tracks electron ID efficiency: ~ 90 % for ~ 5 % e \rightarrow h mis-id probability kaon ID efficiency: ~ 95 % for ~ 5 % $\pi \rightarrow K$ mis-id probability muon ID efficiency:

~ 97 % for 1-3 % $\pi{\rightarrow}\mu$ mis-id probability

LHCb schematics

LHCb Trigger

- two stage trigger
 - L0 Trigger (Hardware)
 - High Level Trigger (Software)

Direct CPV in $B_{(s)} \rightarrow K\pi$: Correction

Correction from raw to CP asymmetry:

$$A_{CP} = A_{\text{raw}} - \zeta_{d(s)} A_D(K\pi) + \kappa_{d(s)} A_P(B^0_{(s)})$$

$$\zeta_{d=+1, \zeta_s=-1} \qquad \begin{array}{c} \text{instrumental} \\ \text{asymmetry} \end{array} \qquad \begin{array}{c} \text{mixing} \\ \text{dilution} \end{array} \qquad \begin{array}{c} \text{production} \\ \text{asymmetry} \end{array}$$

- A_D: measured with D*+→D⁰(K⁻π⁺)π⁺/D⁰(K⁻K⁺)π⁺ decays (incl. D⁰→K⁻K⁺ CP asymmetry)
- A_P: measured from time-dependent raw asymmetries

tu

a_{sl} in B_s: systematics

Source	$\sigma(A_{\text{meas}})[\%]$
Signal modelling and muon correction	0.07
Statistical uncertainty on the efficiency ratios	0.08
Background asymmetry	0.05
Asymmetry in track reconstruction	0.13
Field-up and field-down run conditions	0.01
Software trigger bias (topological trigger)	0.05
Total	0.18

Table 3: Sources of systematic uncertainty on A_{meas} .

Table 2: Muon efficiency ratio corrected asymmetry A^c_{μ} . The errors account for the statistical uncertainties in the B^0_s signal yields.

A^{c}_{μ} [%]	KS muon correction		MS muon	Average	
Magnet	$p_x p_y$	$p_{ m T}\phi$	$p_x p_y$	$p_{ m T}\phi$	
Up	$+0.38\pm0.38$	$+0.30 \pm 0.38$	$+0.64\pm0.37$	$+0.63 \pm 0.37$	$+0.49 \pm 0.38$
Down	-0.17 ± 0.32	-0.25 ± 0.32	-0.60 ± 0.32	-0.62 ± 0.32	-0.41 ± 0.32
Avg.	$+0.11\pm0.25$	$+0.02\pm0.25$	$+0.02\pm0.24$	$+0.01\pm0.24$	$+0.04\pm0.25$

γ in B[±] \rightarrow Dh[±]

- interference between two tree diagrams
- methods differ in D decay products

measure charge asymmetries and yield ratios (GLW/ ADS):

$$A_{h}^{f} = \frac{\Gamma(B^{-} \to D[\to f]h^{-}) - \Gamma(B^{+} \to D[\to \overline{f}]h^{+})}{\Gamma(B^{-} \to D[\to f]h^{-}) + \Gamma(B^{+} \to D[\to \overline{f}]h^{+})} \qquad \qquad R_{K/\pi}^{f} = \frac{\Gamma(B^{-} \to D[\to f]K^{-}) + \Gamma(B^{+} \to D[\to \overline{f}]K^{+})}{\Gamma(B^{-} \to D[\to f]\pi^{-}) + \Gamma(B^{+} \to D[\to \overline{f}]\pi^{+})}$$

$$R_h^{\pm} = \frac{\Gamma(B^{\pm} \to D[\to f_{\sup}]h^{\pm})}{\Gamma(B^{\pm} \to D[\to f]h^{\pm})}$$

cartesian coordinates from Dalitz plane (GGSZ)

tu

γ in B[±] \rightarrow Dh[±]: plugin method

plugin method similar to Feldman-Cousins:

The evaluation of this combination follows a frequentist approach. A χ^2 -function is defined as $\chi^2(\vec{\alpha}) = -2 \ln \mathcal{L}(\vec{\alpha})$, where $\mathcal{L}(\vec{\alpha})$ is defined in Eq. 1. The best-fit point is given by the global minimum of the χ^2 -function, $\chi^2(\vec{\alpha}_{\min})$. To evaluate the confidence level for a given value of a certain parameter, say $\gamma = \gamma_0$ in the following, the value of the χ^2 -function at the new minimum is considered, $\chi^2(\vec{\alpha}'_{\min}(\gamma_0))$. This also defines the profile likelihood function $\hat{\mathcal{L}}(\gamma_0) = \exp(-\chi^2(\vec{\alpha}'_{\min})/2)$. Then a test statistic is defined as $\Delta\chi^2 = \chi^2(\vec{\alpha}'_{\min}) - \chi^2(\vec{\alpha}_{\min})$. The *p*-value, or 1 - CL, is calculated by means of a Monte Carlo procedure, described in Ref. [29] and briefly recapitulated here. For each value of γ_0 :

- 1. $\Delta \chi^2$ is calculated;
- 2. a set of pseudoexperiments \vec{A}_j is generated using Eq. 1 with parameters $\vec{\alpha}$ set to $\vec{\alpha}'_{\min}$ as the PDF;
- 3. $\Delta \chi^{2\prime}$ of the pseudoexperiment is calculated by replacing $\vec{A}_{obs} \rightarrow \vec{A}_j$ and minimising with respect to $\vec{\alpha}$, once with γ as a free parameter, and once with γ fixed to γ_0 ;
- 4. 1 CL is calculated as the fraction of pseudoexperiments which perform worse $(\Delta \chi^2 < \Delta \chi^{2\prime})$ than the measured data.

This method is sometimes known as the " $\hat{\mu}$ ", or the "plug-in" method. Its coverage cannot be guaranteed [29] for the full parameter space, but is verified for the best-fit point. The reason is, that at each point γ_0 , the nuisance parameters, *i.e.* the components of $\vec{\alpha}$ other than the parameter of interest, are set to their best-fit values for this point, as opposed to computing an *n*-dimensional confidence belt, which is computationally very demanding.

Flavour Tagging

- infer B production flavour
- Opposite Side algorithms: charge of leptons/hadrons of other B meson
- Same Side algorithms: Kaon/Pion charge from fragmentation

- mistag probability ω
 - dilution $D=(1-2\omega)$ of CP asymmetry
- calibration of taggers necessary

CPV in $B_d \rightarrow J/\psi K_s$: comparison

- LHCb not yet competitive with B factories
- measurement on 3 fb⁻¹ data expected soon

tu

CPV in $B_d \rightarrow J/\psi K_s$: systematics/tagging

Table 1

Summary of systematic uncertainties on the CP parameters.

Origin	$\sigma(S_{J/\psi K^0_{\rm S}})$	$\sigma(C_{J/\psi K^0_{\rm S}})$
Tagging calibration	0.034	0.001
Tagging efficiency difference	0.002	0.002
Decay time resolution	0.001	0.002
Decay time acceptance	0.002	0.006
Background model	0.012	0.009
Fit bias	0.004	0.005
Total	0.036	0.012

$$\varepsilon_{\text{tag}} \mathcal{D}^2 = (2.38 \pm 0.27)\%$$

 $\varepsilon_{\text{tag}} = (32.65 \pm 0.31)\%$
 $\omega = (36.5 \pm 0.8)\%$

CPV $B_s \rightarrow J/\psi K^+K^- / J/\psi \pi^+\pi^-$: angles

Flavour Tagging calibration

Calibration	p_0	p_1	$\langle \eta angle$	Δp_0
OS	$0.392 \pm 0.002 \pm 0.008$	$1.000 \pm 0.020 \pm 0.012$	0.392	0.011 ± 0.003
\mathbf{SSK}	$0.350 \pm 0.015 \pm 0.007$	$1.000 \pm 0.160 \pm 0.020$	0.350	-0.019 ± 0.005

CPV B_s \rightarrow J/ ψ K+K⁻ / J/ ψ \pi+\pi⁻: ambiguity

- measure phase difference between S- and P- " wave amplitudes
- physical solution:
 - decreasing trend with m(K⁺K⁻)

Phys. Rev. D 87, 112010 (2013)

Phys. Rev. Lett. 108, 241801 (2012)

CPV B_s \rightarrow J/ ψ K⁺K⁻ / J/ ψ π⁺π⁻: systematics

Source	Γ_s	$\Delta\Gamma_s$	$ A_{\perp} ^2$	$ A_0 ^2$	$ \delta_{\parallel} $	δ_{\perp}	ϕ_s	$ \lambda $
	$[ps^{-1}]$	$[ps^{-1}]$			[rad]	[rad]	[rad]	
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	$+0.13 \\ -0.21$	0.22	0.091	0.031
Background subtraction	0.0041	0.002	_	0.0031	0.03	0.02	0.003	0.003
$B^0 \rightarrow J/\psi K^{*0}$ background	_	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	_	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	_	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	_	_	_	_	_	_
Upper decay time acc. model	0.0040	_	_	_	_	_	_	_
Length and mom. scales	0.0002	_	_	_	_	_	_	_
Fit bias	_	_	0.0010	_	_	_	_	_
Decay time resolution offset	_	_	_	_	_	0.04	0.006	_
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.08	0.011	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	$ +0.15 \\ -0.23$	0.23	0.092	0.038

Table 9: Statistical and systematic uncertainties.

Table 10: Statistical and systematic uncertainties for S-wave fractions in	bins of $m(K^+K^-)$).
--	---------------------	----

Source	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6
	$F_{\rm S}$					
Stat. uncertainty	$+0.081 \\ -0.073$	$+0.030 \\ -0.027$	$+0.014 \\ -0.007$	$+0.012 \\ -0.009$	$+0.027 \\ -0.025$	$+0.043 \\ -0.042$
Background subtraction	0.014	0.003	0.001	0.002	0.004	0.006
$B^0 \rightarrow J/\psi K^{*0}$ background	0.010	0.006	0.001	0.001	0.002	0.018
Angular acc. reweighting	0.004	0.006	0.004	0.005	0.006	0.007
Angular acc. statistical	0.003	0.003	0.002	0.001	0.003	0.004
Fit bias	0.009	_	0.002	0.002	0.001	0.001
Quadratic sum of syst.	0.020	0.009	0.005	0.006	0.008	0.021
Total uncertainties	$+0.083 \\ -0.076$	$+0.031 \\ -0.029$	$+0.015 \\ -0.009$	$+0.013 \\ -0.011$	$+0.028 \\ -0.026$	$+0.048 \\ -0.047$

CPV B_s \rightarrow J/ ψ K⁺K⁻ / J/ ψ π⁺π⁻: correlations

Table 6: Results of the maximum likelihood fit for the principal physics parameters. The first uncertainty is statistical and the second is systematic. The value of Δm_s was constrained to the measurement reported in Ref. [38]. The evaluation of the systematic uncertainties is described in Sect. 10.

Parameter	Value
$\Gamma_s [\mathrm{ps}^{-1}]$	$0.663 \pm 0.005 \pm 0.006$
$\Delta\Gamma_s [\mathrm{ps}^{-1}]$	$0.100 \pm 0.016 \pm 0.003$
$ A_{\perp} ^2$	$0.249 \pm 0.009 \pm 0.006$
$ A_0 ^2$	$0.521 \pm 0.006 \pm 0.010$
δ_{\parallel} [rad]	$3.30^{+0.13}_{-0.21}\pm 0.08$
$\delta_{\perp} \text{ [rad]}$	$3.07 \pm 0.22 \pm 0.08$
$\phi_s \text{ [rad]}$	$0.07 \pm 0.09 \pm 0.01$
$ \lambda $	$0.94 \pm 0.03 \pm 0.02$

Table 7: Correlation matrix for the principal physics parameters.

	Γ_s	$\Delta\Gamma_s$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $
	$[{\rm ps}^{-1}]$	$[{\rm ps}^{-1}]$			[rad]	[rad]	[rad]	
$\Gamma_s [\mathrm{ps}^{-1}]$	1.00	-0.39	0.37	-0.27	-0.09	-0.03	0.06	0.03
$\Delta\Gamma_s [\mathrm{ps}^{-1}]$		1.00	-0.68	0.63	0.03	0.04	-0.04	0.00
$ A_{\perp} ^2$			1.00	-0.58	-0.28	-0.09	0.08	-0.04
$ A_0 ^2$				1.00	-0.02	-0.00	-0.05	0.02
$\delta_{\parallel} [\mathrm{rad}]$					1.00	0.32	-0.03	0.05
δ_{\perp} [rad]						1.00	0.28	0.00
$\phi_s \; [\mathrm{rad}]$							1.00	0.04
$ \lambda $								1.00