
Observational consequences of composite inflation models

Khamphee Karwan

The institute for fundamental study, Naresuan University, Thailand

1



Outlines

1. Composite inflation model

2. Evolution equations

3. Power spectrum of perturbation and bound on the model parameters

4. Conclusions

2



Composite inflation model

The inflaton is a composite field made out of the bound state of particles

in strongly coupled theory. The general action for composite inflation is

S =

∫

d4x
√−g

{

M 2
p

2
F (φ)R− 1

2
G(φ)∂νφ∂

µφ− V (φ)

}

,

(1)

where d is the mass dimension of the composite field φ and

F (φ) = 1 + ξ
M2

p
φ

2

d and G(φ) = φ
2−2d

d .
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Evolution equations

The Friedmann equation and the evolution equation for the background

field are respecttively given by

3FH2 + 3ḞH = 1
2Gφ̇2 + V (φ) , (2)

Gφ̈+ 1
2Gφφ̇

2 + 3HGφ̇+ Vφ = 3FφH
2 (2− ǫ) , (3)

ǫ = − Ḣ

H2
= − Fφ

2HF
+

GΦ̇2

2H2M 2
PF

+
FΦΦΦ̇

2

2H2F
+

FΦΦ̈

2H2F
, (4)
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During inflation,

Gφ̇2 ≪ V (φ) . (5)

During the time at which the observable

perturbations exit the horizon,

ǫ ≪ 1 ∼ constant , Ft =
Ḟ

2FH
∼ constant .

(6)
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The power spectrum for the primordial curvature perturbation

We suppose that during the horizon exit Ft and ǫ are approximately

constant, so that

Pζ ≃
(1 + Ft)

1/2 (3F2
t +GΦ′2/2F

)1/2

F (ǫ+ Ft)
3/2

H2

8π2

∣

∣

∣

∣

∣

csk|τ |=1

. (7)

6



The spectrum index for this power spectrum is

ns =
d lnPζ

d ln k
+ 1 ≃ 1− 2ǫ− 2Ft +

Φ′

2

d ln
[

GΦ′2/
(

2F + 3F2
t

)]

dΦ

(8)

where we have used d/d ln k ≃ −φ′d/d(ln a) . Using

H2 (1 + Ft) ≃ V (φ) during inflation,we get

As ≃
(1 + Ft)

1/2 (3F2
t +GΦ′2/2F

)1/2
V

24π2F 2 (ǫ+ Ft)
3/2 (1 + 2Ft)

∣

∣

∣

∣

∣

csk|τ |=1

, (9)
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Constraints the model parameters

Techni-Inflation:

First, we consider the case where the inflaton is the composite state of

techni-quarksin minimal walking technicolor theory. – Techni-Inflation.

In this case, a

V (ϕ) =
κ

4
ϕ4 . (10)

a P. Channuie, J. J. Joergensen and F. Sannino, “Minimal Composite Inflation,” JCAP 1105, 007 (2011) [arXiv:1102.2898 [hep-ph]].
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For this model,

ns = 1− 6ξ

1 + ϕ2ξ (1 + 6ξ)
+

4 + 4ξ
(

4 + ϕ2
)

3 [ϕ+ 4ξϕ+ ϕ3ξ (1 + 6ξ)]2
−

3ϕ2 [1

(11)

and

As =
κϕ6

(

6ϕ2ξ2 +
(

ϕ2 + 4
)

ξ + 1
) (

ϕ2ξ(6ξ + 1) + 1
)

768 (πϕ2ξ + π)2 (6ϕ2ξ2 + (ϕ2 − 4) ξ + 1)
, (12)
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In the ξ → ∞ limit:

ns ≃ 1− 4
2N+1 +

f(N ,φ)
ξ2 +O

(

1
ξ3

)

,

As ∼ κN (2N+1)
144π2ξ2 + g (N , φ)O

(

1
ξ3

)

.

a ns = 0.960± 0.007 , ⇒ 43 . N . 62 ,

3.04 . ln
(

As × 1010
)

. 3.13 , ⇒ 3.9 < κ
ξ2 × 10−6 < 8.9 .

a P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results. XXII. Constraints on inflation,” arXiv:1303.5082 [astro-ph.CO].
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In the ξ → 0 limit:

ns ≃
(

1− 24
ϕ2

)

+
(

96
ϕ2 + 8

)

ξ +O
(

ξ2
)

,

As ≃ κϕ6

768π2 −
ξ(κϕ6(ϕ2−8))

768π2 +O
(

ξ2
)

≃ 2κ(N+1)
3

3π2 +O (ξ) .

As ∼ 10−9 requires κ < 10−7. From the numerical calculation:

κ > 10−14 for N = 55 . (13)

11



Glueball Inflation:

We next consider the case where the inflaton is the bound state of gluon,

called glueball. The potential for the glueball inflaton is a

V (ϕ) = 2ϕ4 ln
(ϕ

Λ

)

, (14)

where Λ is the confining scale and we have redefined the field such that ϕ has a canonical dimension.

aF. Bezrukov, P. Channuie, J. J. Joergensen and F. Sannino, “Composite Inflation Setup and Glueball

Inflation,” Phys. Rev. D 86, 063513 (2012) [arXiv:1112.4054 [hep-ph]].
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In the ξ → ∞limit : ns ≃ 1− f (N ) +
g (N , ϕ,Λ)

ξ
+

(∞
ξ∈

)

,

(15)

As ≃
(ln[ϕ/Λ])3(6 ln[ϕ/Λ] + 1)

π2(6 ln[ϕ/Λ]− 1)ξ2
+O

(

1/ξ3
)

. (16)

The contributions from the next leading order terms can be neglected if

ξ > 104 and Λ > 0.1 . For ξ > 104 and Λ > 0.1,

0.945 . ns . 0.975 , ⇒ 30 . N . 60
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In the ξ → 0 limit, we get

As ≃
16ϕ6(ln(ϕ/Λ))3

3π2(1 + 4 ln(ϕ/Λ))2
+O (ξ) (17)

Slow-roll evolution requires ln (ϕ/Λ) ≫ 1, so As ≫ 10−9.

In general, As increases when ξ decreases.

On the next slide, we plot how As ≡ ln
(

As × 1010
)

and ns

depend on xi, Λ and the number of e-foldings N .
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ξ & 3.5× 104 , Λ cannot be constrained . (18)
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Super Yang-Mills Inflation:

We finally consider the case where the inflaton is the composite state of

the super partner of glueball called gluino-ball in the super Yang-Mills

theory.

In this case, a

V (ϕ) = 4N 2
cϕ

4(ln[ϕ/Λ )2 , ] (19)

where Λ is the confining scale and Nc is the number of colors.

a P. Channuie, J. J. Jorgensen and F. Sannino, “Composite Inflation from Super Yang-Mills, Orientifold and One-Flavor QCD,” Phys.

Rev. D 86, 125035 (2012) [arXiv:1209.6362 [hep-ph]].
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In the ξ → ∞limit : ns ≃ 1 + f (N ) +
g (N , ϕ,Λ)

ξ
+O

(

1

ξ2

)

,

(20)

As ≃
Y 4 [3Y + 1]

2π2N 2
c [3Y − 1] ξ2

+O(1/ξ3) , (21)

where Y = ln (ϕ/Λ) . If ξ > 104,Λ > 0.1 , the next leading

contributions can be neglected, so that for ξ > 104 and Λ > 0.1,

0.945 . ns . 0.975 , ⇒ 37 . N . 80
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Similar to the glueball model, the power spectrum amplitude increases

when ξ decreases, and the power spectrum amplitude cannot satisfy the

observational bound if ξ < 1.

For this model,

ξ & 5× 104 , Λ & 10−5 . (22)
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Conclusions

We study how the parameters of various composite inflation model

influence the spectral index ns and the power spectrum amplitude As of

the primordial curvature perturbations, and then constrain these

parameters using the observational bound on ns and As from the Planck

data. We find that for the techni-inflation model, the ratio κ/ξ2 is

constrained to be ∼ 106 for a large ξ. In the case of glueball-inflation, we

find that the observational bound for ns and As can be satisfied at 2-σ if

ξ & 3.5× 104. For the Super Yang-Mills Inflation, we find that ξ is

constrained to be & 5× 104 and Λ & 10−5
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