Highlights from CMS

And the discovery of a Higgs boson

Windows on the Universe Quy Nhon, Vietnam

August 12, 2013

Joe Incandela Santa Barbara/CERN

Timeline of the LHC Project (en bref)

- 1984 Lausanne workshop on a Large Hadron Collider in the LEP tunnel
- 1987 Rubbia "Long-Range Planning Committee" recommends LHC for CERN's future
- 1993 ATLAS and CMS selected by LHCC

1998 Construction begins (after approval of Technical Design Reports)

2008-9 First beams - First pp Collisions

2012 New boson discovered with mass ~125 GeV

Based on slide from Tejinder Virdee

10 Sep. 2008: LHC inauguration

First (single) beams circulating in the machine

Six CERN DGs from conception to physics! Schopper, Rubbia, Llewellyn Smith, Maiani, Aymar, Heuer (from right to left) with 5-year terms!!

And the LHC outperformed expectations

Spectacular 3 years and ~30/fb delivered per ATLAS/CMS

Spectacular Run 1 Detector Performance: 2009-2013

- The LHC detectors have worked extremely well!
 - Almost no degradation in performance
- Some losses in performance were even recovered

ATLAS Performance in 2012

Subdetector	Number of Channels	Approximate Operationa	I Fraction	000
Pixels	80 M	95.0%		CSC
SCT Silicon Strips	6.3 M	99.3%		RPC
TRT Transition Radiation Tracker	350 k	97.5%		DT
Ar EM Calorimeter	170 k	99.9%		HO
Tile calorimeter	9800	98.3%		HF
Hadronic endcap LAr calorimeter	5600	99.6%		HE
Forward LAr calorimeter	3500	99.8%		HB
VL1 Calo trigger	7160	100%		HCAL
VL1 Muon RPC trigger	370 k	100%		FS
VL1 Muon TGC trigger	320 k	100%		FF
MDT Muon Drift Tubes	350 k	99.7%		
CSC Cathode Strip Chambers	31 k	96.0%		ED
RPC Barrel Muon Chambers	370 k	97.1%	ATLAS	ECAL
TGC Endcap Muon Chambers	320 k	98.2%		Strips
			_	Pixels

CMS Status in Feb 2013 (%)

95

UCSB/CERN

00

Higgs Status Dec. 2011

- Small excesses at 125 GeV
 ATLAS and CMS couldn't celebrate yet...
 - Not unprecedented to have coincidences at low significance
 - γγ channel the main contributor
 - Very small signal on large background
- Important steps taken for 2012
 - Energy increased from √s= 3.5 TeV to 4 TeV and luminosity increased
 - Target 5σ sensitivity down to 110 GeV
 - 'Blind' the 2012 data
 - Extended run by ~2.5 months

Status of Electroweak Measurements Winter2012

Pileup studies Feb 2012

. p₇>10 . p₇>30

15 20 25 35

PV multiplicity

0.04

PV multiplicity

Data

0.0 et

Data

CMS

Pileup studies Feb 2012

СM

Quy Nhon Vie Universe Windows on the Highlights -

EWK measurements over >4 orders of magnitude

Ready to hunt for the Higgs

Good understanding of the detector + accurate theory predictions →Precision SM measurements →Excellent control of backgrounds

GeV

S

Data

____±1σ

±2σ

110

S+B Fit

120

Phys. Lett. B 716 (2012) 1 Phys. Lett. B 716 (2012) 30

48 years Since idea was hatched

- 20 years
 To design and build
- 3 years
 - To acquire the data
- A generation
 of work by thousands

http://www.elsevier.com/locate/physletb

http://www.elsevier.com/locate/physletb

The Economist

JULY 7TH-13TH 2012

In praise of charter schools Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

A giant leap for science

Economist.com

Finding the Higgs boson

BREAKTHROUGH of the YEAR The HIGGS BOSON

DHUA

AAAS

Clenc

e

CMS Higgs Results Since 4th July 2012

ZZ→eeuu candidate

the Universe - Quy Nhon Vietnam -J. Incandela - UCSB/CER

dows of

12 August 2013 - CMS Highlights - Wir

 $m_{\rm H} = 125.8 \pm 0.5 \pm 0.2$ (sys.)

Moriond 2013

 $m_{H} = 125.8 \pm 0.5 \pm 0.2$ (sys.)

Moriond 2013

 $W(\mu\nu)H$, $W(e\nu)H$, $W(\tau\nu)H$, $Z(\mu\mu)H$, Z(ee)H and $Z(\nu\nu)H$

The 5 main decay modes

HIG-13-005

 σ/σ_{SM} , Mass ($\gamma\gamma \oplus ZZ$), Couplings, J^{PC}

CERN April 15, 2013

 μ = 0.80 ± 0.14

- Negligible change for new VH(bb) result: $\mu = 1.15 \pm 0.62 \rightarrow 1.00 \pm 0.50$
- m = 125.7 ± 0.3 ± 0.3 GeV
 - o.5% precision already
- o⁺⁺ is preferred over 2⁺⁺, o⁻⁺ at 2.8, 3.3 σ , respectively

24

A big news week! BREAKING NEWS!

Click To See More Pics From The Vatican

White smoke rises from the chimney on the roof of the Sistine Chapel meaning that cardinals elected a new pope on March 13, 2013.

A big news week!

High Mass Searches and new ttH results

gust 2013

SM Physics

Current Highlights

12

First differential inclusive jet cross section measurement at 8 TeV

Important input to PDF fits

Jet Physics Highlights

Jet Physics Highlights

New α_{s} measurement via ratio R32: $\alpha_{s}(M_{z}) = 0.1148 \pm 0.0014 (exp.) \pm 0.0018 (PDF)^{+0.005}_{-0.0} (scale)$

 Many theoretical uncertainties (related to choice of renormalization and factorization scales, μ_r and m_f, or to non-perturbative effects), are reduced in the 3 to 2 jets cross sections ratio.

31

UCSB/CER

Incandela

SMP-12-002

20

40

60

80

V+jets Highlights

¹⁰⁰ σ(W + c) [pb]

12 August 2013 - CMS Highlights - Windows on the Universe - Quy Nhon Vietnam -.

V+jets Highlights

- $\sigma \times Br: pp \rightarrow b \overline{b}W, W \rightarrow \mu v = 0.53 \pm 0.12 pb$
 - NLO prediction: 0.52 ± 0.03 pb SMP-12-026
- $\sigma \times Br: pp \rightarrow b \overline{b}Z, Z \rightarrow ll = 0.36 \pm 0.07 pb$

SMP-13-004

 $\sqrt{s} = 7 \text{ TeV}$ and $p_T^b > 25 \text{ GeV}$

Electroweak Highlights

Anomalous quartic coupling limits

July 2013	LEP L3 limits D0 limits	_	CMS WW CMS γγ -	γ limits > WW li	s mits		
Anomalous WWγγ	γ Quartic Coupling limits @95% C.L.	Channel	Lim	its	L	V	s
		ww γ	[- 15000,	15000]	0.43fb ⁻¹	0.20	TeV
		$\gamma\gamma \to WW$	[- 430,	430]	9.70fb ⁻¹	1.96	TeV
a⁰//∆² TeV⁻²	·	ww γ	[- 21, 2	20]	19.30fb ⁻¹	8.0	TeV
	••••	$\gamma\gamma ightarrow WW$	[- 4,	4]	5.05fb ⁻¹	7.0	TeV
		ww γ	[- 48000, 2	26000]	0.43fb ⁻¹	0.20	TeV
		$\gamma\gamma \to WW$	[- 1500,	1500]	9.70fb ⁻¹	1.96	TeV
a^{W}/Λ^2 TeV ⁻²		ww γ	[- 34, 3	32]	19.30fb ⁻¹	8.0	TeV
	-····-	γγ → WW	[- 15,	15]	5.05fb ⁻¹	7.0	TeV
f _{T,0} /∆ ⁴ TeV ⁻⁴		ww γ	[- 25, 2	24]	19.30fb ⁻¹	8.0	TeV
-10 ⁵ -10 ⁴ -10 ³ -1	$0^2 - 10 - 1 \ 1 \ 10 \ 10^2 \ 10^3 \ 10^4 \ 10^5$			SN	1P-13-	00	9

CN

Electroweak Highlights

Anomalous quartic coupling limits

July 2013	LEP L3 limits D0 limits		CMS WW γ limits CMS $\gamma\gamma \rightarrow$ WW I	s imits	
Anomalous WW	$I_{ m YY}$ Quartic Coupling limits @95% C.L.	Channel	Limits	L	√s
		ww γ	[- 15000, 15000]	0.43fb ⁻¹	0.20 Te\
		$\gamma\gamma ightarrow WW$	[- 430, 430]	9.70fb ⁻¹	1.96 TeV
a₀ [₩] /Λ² TeV⁻²		\mathbf{WW}_{γ}	[- 21, 20]	19.30fb ⁻¹	8.0 TeV
	••••	$\gamma\gamma ightarrow WW$	[- 4, 4]	5.05fb ⁻¹	7.0 Te\
		ww γ	[- 48000, 26000]	0.43fb ⁻¹	0.20 Te\
		$\gamma\gamma ightarrow WW$	[- 1500, 1500]	9.70fb ⁻¹	1.96 Te\
a _C ^w /∆² TeV⁻²		\mathbf{WW}_{γ}	[- 34, 32]	19.30fb ⁻¹	8.0 TeV
		γγ → WW	[- 15, 15]	5.05fb ⁻¹	7.0 TeV
f _{⊤,0} /Λ ⁴ TeV ⁻⁴		ww γ	[- 25, 24]	19.30fb ⁻¹	8.0 TeV
-10 ⁵ -10 ⁴ -10 ³	-10 ² -10 - 1 1 10 10 ² 10 ³ 10 ⁴ 1	0 ⁵	SN	1P-13-	-009

Stringent limits: Anomalous Trilinear Gauge Couplings

Coupling	95% CL Limit	95% CL Limit
WWγ	-0.38 < k _y < 0.29	-0.050 < l _y < 0.037
Ζγγ	-0.010 < h ₃ ⁷ < 0.010	h ₄ γ < 8.8x10⁻⁵
ZΖγ	-0.0086 < h ₃ ^Z < 0.0084	$-8.0x10^{-5} < h_4^{Z} < 7.9x10^{-5}$

Precise Wy and Zy cross sections Wy: $\sigma/\sigma_{SM} = 1.16 \pm 0.11$ (ex) ± 0.06 (th) Zy: $\sigma/\sigma_{SM} = 0.98 \pm 0.05$ (ex) ± 0.05 (th)

Observation of tW Production

■ V_{tb} > 0.78 @ 95% CL

0.3

0.2 **BDT** Discriminant

0.1

-0.1

-0.2

Searches for New Physics

Current Highlights

August

2

CMS-PAS-EXO-12-048

$Z' \rightarrow ll$: ca. Moriond 2012

$Z' \rightarrow ll$: ca. Moriond 2013

Heavy Resonances

CMSSM Evolution

Courtesy Oliver Buchmueller, EPS 2013

CMSSM in context

SUSY Theory phase space

T. Rizzo (SLAC Summer Institute, 01-Aug-12)

 LHC excludes squarks and gluinos > 1 TeV and > 1.8 TeV respectively in the CMSSM

 But, this is only really probing a tiny part of a large parameter space

Direct 3rd generation production

SUS-13-007

Direct 3rd generation production

SUSY (no show) tables

2

searches

l

SUSY

Natural

B Physics

Current Highlights

CMS Experiment at the LHC, CERN

Data recorded: 2012-Nov-30 07:19:44.547430 GMT (08:19:44 CEST) Run / Event: 208307 / 997510994

Observation of $B_s \rightarrow \mu\mu$ at long last...

30 years searching: B_{d/s} սս

BR $(B_S \rightarrow \mu\mu) = (3.2^{+1.4}_{-1.2} \text{ (stat)}^{+0.5}_{-0.3} \text{ (syst)}) \times 10^{-9} \text{LHCb } 3.5 \text{ } \sigma \text{ evidence}$

BR $(B_d \rightarrow \mu \mu) < 8.4 \times 10^{-10} @95\%$ CL

ATLAS+CMS+LHCb best upper limit on $B_d \! \rightarrow \! \mu \mu$

Ca. Moriond 2013

30 years searching: $B_{d/s} \rightarrow \mu\mu$

 $b \\ W^{\pm} t \\ \overline{s} t \\ \overline{t} \\ V^{\pm} t \\ \overline{t} \\ W^{\pm} \\ \overline{s} W^{\pm} \\ W^{\pm} \\$

- BR(B_s \rightarrow µµ) = (3.56±0.18)×10⁻⁹
 - SM time integrated
- Forbidden at tree level
- Helicity suppressed
 - Cabibbo enhancement of $B_s \rightarrow \mu \mu$ over $B_d \rightarrow \mu \mu$ since $|V_{td}| < |V_{ts}|$
 - A good place to look for enhancements from new physics via loop/box contributions

ν

ndows on the Universe - Quy Nhon Vietnam -J. Incandela - UCSB/CERN CMS Highlights 12 August 2013

- The results:
 - $B(B_s \rightarrow \mu \mu) = (3.0^{+1.0}) \times 10^{-9}$
 - $B(B_d \rightarrow \mu\mu) < 1.1 \times 10^{-9} (9.2 \times 10^{-10})$
 - $B(B_d \rightarrow \mu\mu) = (3.5^{+2.1}_{-1.8}) \times 10^{-10}$
 - Significance ~2σ

BPH-13-007

- Method based on pseudo experiments, modelling distribution with variablewidth Gaussian function (suggested by R. Barlow arXiv:physics/0406120):
- LHCb-CONF-2013-012 Several methods used, giving compatible results

 $B(B_s^0 \rightarrow \mu^+ \mu^-) [10^{-9}]$

Combination for an Observation

Run 1 has been a success More results to come this year

- Run 2 and beyond
 - Extend searches and precision measurements significantly
 - Lots more to come...
 - The LHC is a Higgs (and top, W, Z ...) factory, superb for precision measurements and for uncovering rare physics

The End

ECAL response and m(γγ) resolution 7 TeV: 25% improvement over one year

Laser calibration:Automated 48-hour calib. loop.

Higgs Properties in H(yy)

HIG-13-016

- H(γγ) analyses are used to
 - Look for additional Higgs'
 - Set a limit on the Higgs width
 - Study the Higgs spin-parity

Interpretation of data in EW-singlet models and LHC XS WG benchmark models: CMS-PAS-HIG-13-008 CMS-PAS-HIG-13-014

SB/CER

New mini-combinations

More channels under study – reported soon

64

Invisible Higgs

New ZH analysis

- Z decaying leptonically and Higgs decaying invisibly
- Use transverse mass as the discriminating variable
- CMS (5+20 fb⁻¹):
 - Br(H→χχ) < 75% (91% exp.) @ 95% CL, m_H = 125 GeV

HIG-13-018

Triple Gauge Couplings

- Precision measurement of Wγ and Zγ production cross section and
 - Most stringent limits on anomalous WWγ and Zγγ couplings to date

Coupling	95% CL Limit	95% CL Limit
WWγ	-0.38 < k _y < 0.29	-0.050 < Ι _γ < 0.037
Ζγγ	-0.010 < h ₃ ⁷ < 0.010	h ₄ ^γ < 8.8x10 ⁻⁵
ZZγ	-0.0086 < h ₃ ^Z < 0.0084	-8.0x10 ⁻⁵ < h ₄ ^{-Z} < 7.9x10 ⁻⁵

EWK-11-009

2

TOP Highlights

R=Br(t→Wb)/Br(t→Wq) R = 1.023 +0.036 -0.034

- Search for FCNC t \rightarrow Zq:
- Br(t →Zq) < 0.07% @ 95% CL

TOP-12-037

- New W helicity
 - In single-top and tt dileptons

67

Heavy lons

Current Highlights

Jets in pPb Collisions

- No jet quenching in pPb
 - Supports idea of quenching as due to interactions with a hot dense 'partonic medium', rather than initial state or flow effects

PbPb: Dijet

increasing p_{T,1}

Jets in pPb Collisions

- No jet quenching in pPb
 - Supports idea of quenching as due to interactions with a hot dense 'partonic medium', rather than initial state or flow effects
- Dijet η
 - Correlated with Feynman x in the Pb nucleus
 - Sensitive to nuclear PDF

Ridge in High-Multiplicity pPb

- 2 and 4-particle correlations and multipole harmonics (v_2, v_3) studied
- Striking similarities across collision systems (pPb, PbPb) for the same multiplicity

BSM Searches: W'(tb)

- Probing W_{R,L} as well as arbitrary couplings
 - Full 8 TeV statistics
 - Limits as high as 2.1 TeV are set for W_R and W_L without interference

Extra Dimensions

- Can also look for evidence of **KK Gravitons**
 - **ADD Extra Dimensions**

 $M_{Pl}^2 \sim M_D^{2+n} R^n$

Search for Top Partners

 Search for vector-like T quark in various possible decay modes in the combinations of I+jets and dileptons

RPV Gluinos in 3 jets

Searches for Long-Lived SUSY

- Extends HSCP search to full 8 TeV statistics
 + 7 TeV reanalysis
- Background prediction
 - Use absence of correlation between p_T spectrum and the mass as determined from ionization
- Strong limits
 - Gluinos, stops, and staus
 - Use combination of tracker +TOF and tracker-only analyses

- Full angular analysis of $B^0 \to \mu^+ \mu^- K^{*0}$
 - And determination of differential branching fraction as a function of $m_{\mu\mu}{}^2$

<sup>Y(nS) do/dp_T
7 TeV data sample</sup>

A portal to physics beyond the SM

- SM time integrated BR($B_s \rightarrow \mu\mu$) = (3.56±0.18)×10⁻⁹
 - Forbidden at tree level
 - Involves FCNC's
 - Helicity suppressed

- Cabibbo enhancement of $B_s \rightarrow \mu\mu$ over $B_d \rightarrow \mu\mu$ since $|V_{td}| < |V_{ts}|$
- A good place to look for enhancements from new physics
 - via loop/box contributions

- 2HDM: BR(Bs/d→ $\mu\mu$) ∝ tan⁴β and m(H+)
 - J. R. Ellis et al, JHEP 05 (2006) 063
- MSSM: BR(Bs/d \rightarrow µµ) \sim tan⁶ β
 - J.Parry, Nucl. Phys. B 760 (2007) 38
- Leptoquarks
 - S. Davidson and S. Descotes-Genon
 - JHEP 11 (2010) 073
- 4th generation top
 - Wei-Shu Hou, Masaya Kohda, Fanrong Xu,
 - Phys. Rev. D87, 094005 (2013).

Courtesy Fabrizio Palla (LHCb CERN Seminar August 6, 2013)

20

New CMS Higgs projections for 300(0) fb⁻¹

Bracket precision estimates

- 1. Systematics unchanged
- 2. Theory uncertainties reduced $\frac{1}{2}$, all other systematics ~ $\frac{1}{\sqrt{1}}$

Upgrades target precision Higgs measurements with pileup ~140!! (25 ns and L = 5x10³⁴ cm⁻²s⁻¹)

CMS Phase-2 Upgrades

Muons

- complete RPCs in forward region with new technology, GEM or GRPCs
- \Rightarrow extend η coverage ?

- new Inner Tracker
 - ➡ radiation hardness
 - ➡ better granularity and faster links
 - improved precision
 - ➡ less material
 - \Rightarrow extend η coverage ?

• T/DAQ

- → Level-1 at 1 MHz (?) (requires all new FE/RO)
- ➡ Tracking at Level-1 (!)
- ➡ HLT output 10 kHz ?

Technical Proposal in 2014

• upgrade/replace Forward Calorimeters

- \Rightarrow extend η coverage ?
- mitigate pileup effects with tracking and precise timing

dela - UCSB/CER

80-km tunnel in Geneva area – VHE-LHC

Julie

Lake Geneva

 $16 T \Rightarrow 100 \text{ TeV in 100 km}$ $20 T \Rightarrow 100 \text{ TeV in 80 km}$

LEGEND

HE_LHC 80km option potential shaft location Geneva

Saleve

even better 100 km?

o 2012 Google mage 35 2012 GooEye 11 17 2012 IGN France

Courtesy L. Rossi 83