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CERN made headlines in world media

◮ The discovery itself was a triumph of technology and

ingeniouity

◮ But the excitement was mainly due to its potential

theoretical significance
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◮ The precision of the measurements often led to

successful predictions of new Physics.

◮ The discovery of weak neutral currents by Gargamelle in 1972

νµ + e− → νµ + e− ; νµ + N → νµ + X

Both, their strength and their properties were predicted by the
Model.

◮ The discovery of charmed particles at SLAC in 1974-1976

Their presence was essential to ensure the absence of
strangeness changing neutral currents, ex. K 0 → µ+ + µ−

Their characteristic property is to decay predominantly in
strange particles.
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The Standard Model has been enormously successful

◮ A necessary condition for the consistency of the Model is that∑
i Qi = 0 inside each family.

When the τ lepton was discovered the b and t quarks were
predicted with the right electric charges.

◮ The discovery of the W and Z bosons at CERN in 1983

The characteristic relation of the Standard Model with an
isodoublet Higgs mechanism mZ = mW /cosθW is checked
with very high accuracy (including radiative corrections).

◮ The t-quark was seen at LEP through its effects in radiative
corrections before its actual discovery at Fermilab.

◮ The final touch: The recent discovery of the
Brout-Englert-Higgs scalar



All this success is in fact the triumph of

renormalised perturbation theory!

For the first time ALL fundamental interactions in High

Energy Physics are tested at the level of radiative corrections



0 1 2 3

∆αhad(mZ)∆α(5) 0.02761 ± 0.00036 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1873

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4965

σhad [nb]σ0 41.540 ± 0.037 41.481

RlRl 20.767 ± 0.025 20.739

AfbA0,l 0.01714 ± 0.00095 0.01642

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480

RbRb 0.21638 ± 0.00066 0.21566

RcRc 0.1720 ± 0.0030 0.1723

AfbA0,b 0.0997 ± 0.0016 0.1037

AfbA0,c 0.0706 ± 0.0035 0.0742

AbAb 0.925 ± 0.020 0.935

AcAc 0.670 ± 0.026 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.425 ± 0.034 80.398

ΓW [GeV]ΓW [GeV] 2.133 ± 0.069 2.094

mt [GeV]mt [GeV] 178.0 ± 4.3 178.1

Mesure AjustementObservable
O     - Omes. ajust.

mes.σ
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◮ Landau-Ginsburg vs BCS

◮ L.D. Landau and B.L. Ginzburg JETP 20 (1950) 1064

∆~A = ........ + 4πe2

mc2
|Ψ|2~A ⇒ ~A(x) ∼ ~A(0)e−x/λ

◮ In BCS the physical meaning of Ψ is revealed

◮ But here we see the particle!
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◮ Gauge Theories contain two independent worlds:

◮ The gauge bosons: Their number and their dynamics are
determined by Geometry

◮ The fermions are arbitrary, but their dynamics is not.

◮ Do we need a third world, The world of scalars?

Many arbitrary parameters. Their masses are unstable Why??
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Do we understand the Physics? II.

◮ Possible theoretical answers:

◮ No elementary scalars.

Does not seem to work

◮ Supersymmetry. The scalars complete the massive vector
supermultiplet.

We do not know where and how it is broken.

◮ Could the scalars become also geometrical?
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Do we understand the Physics? III.

◮ Gauge transformations are:

Diffeomorphisms space-time

Internal symmetries

◮ But the internal symmetry transformations are only local in
space-time.

Is Kaluza-Klein the answer?

◮ Question: Is there a space on which Internal symmetry
transformations act as Diffeomorphisms?

◮ Answer: Yes, but it is a space with non-commutative
geometry.

A space defined by an algebra of matrix-valued functions
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History

◮ Short distance singularities. ???

Heisenberg → Peierls → Pauli → Oppenheimer → Snyder

◮ External fluxes.

Landau (1930) ; Peierls (1933)

◮ Seiberg-Witten map.

◮ The construction of gauge theories using the techniques of
non-commutative geometry.

◮ Large N gauge theories and matrix models.
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Large N field theories

◮ φi (x) i = 1, ...,N ; N → ∞

φi (x) → φ(σ, x) 0 ≤ σ ≤ 2π

∑
∞

i=1
φi (x)φi (x) →

∫
2π
0

dσ(φ(σ, x))2

◮ but

φ4 → (
∫
)2

◮ however

For a Yang-Mills theory, the resulting expression is local



Gauge theories on surfaces

Given an SU(N) Yang-Mills theory in a d−dimensional space

Aµ(x) = Aa
µ(x) ta

there exists a large N limit such that:

(Aµ(x))
a
b
→ Aµ(x , σ1, σ2) (Fµν(x))

a
b
→ Fµν(x , σ1, σ2)
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Gauge theories on surfaces

◮ The gauge transformations of the SU(N) Yang-Mills theory
become area preserving diffeomorphisms of the surface:

δAµ = ∂µω(x) + [Aµ, ω] → δAµ = ∂µω(x , σ1, σ2) + {Aµ, ω}
δFµν = [Fµν , ω] → δFµν = {Fµν , ω}
Fµν = ∂µAν − ∂νAµ + {Aµ,Aν}

◮ The SU(N) matrix commutators are replaced by Poisson
brackets with respect to the variables σ1 and σ2

◮ The classical action becomes

S ∼ − 1

4

∫
TrFµνF

µνd4x → S ∼ 1

4

∫
FµνFµνd4xdσ1dσ2
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Gauge theories on surfaces

◮ The SU(N) algebra → The algebra of the area preserving
diffeomorphisms of a closed surface.

◮ The structure constants of [SDiff (S2)] are the limits for large
N of those of SU(N).



Gauge theories on surfaces

◮ To all orders in 1/N



Gauge theories on surfaces

◮ To all orders in 1/N

◮ Given an SU(N) Yang-Mills theory in a d−dimensional space

Aµ(x) = Aa
µ(x) ta
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◮ To all orders in 1/N

◮ Given an SU(N) Yang-Mills theory in a d−dimensional space

Aµ(x) = Aa
µ(x) ta

◮ There exists a reformulation in d+2 dimensions

Aµ(x) → Aµ(x , z1, z2) Fµν(x) → Fµν(x , z1, z2)

with [z1, z2] =
2i
N
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◮ [Aµ(x),Aν(x)] → {Aµ(x , z1, z2),Aν(x , z1, z2)}Moyal

[Aµ(x),Ω(x)] → {Aµ(x , z1, z2),Ω(x , z1, z2)}Moyal

∫
d4x Tr (Fµν(x)F

µν(x)) →∫
d4xdz1dz2 Fµν(x , z1, z2) ∗ Fµν(x , z1, z2)

◮ Gauge theories are equivalent to field theories on fuzzy

surfaces

◮ Non-Commutative Geometry is a property of gauge theories

◮ Whether it will turn out to be a useful property is still
questionable.
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Conclusions

◮ The completion of the Standard Model strongly indicates

that new and exciting Physics is around the corner

◮ But, for the moment, we see no corner!
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To end, a story:

◮ A Chinese, an Italian and a Greek were arguing which one
among these three ancient civilisations was the most
advanced.

◮ The Chinese: We invented printing, cast iron, explosives.....

◮ The Italian: All these are not High Tech. When we excavated
under Rome, we found traces of cables. The ancient Romans
had a fully operating telephone system!

◮ The Greek: Old fashion technology. When we excavated
under Athens, we found nothing. The ancient Greeks were
using wireless communications!


