

Eva Halkiadakis

Rutgers, the State University of NJ

"SUSY 101"

New spin-based symmetry relating fermions and bosons

If R-Parity is conserved, provides Dark Matter Candidate (Lightest Supersymmetric Particle or LSP)

• R-parity = $(-1)^{3(B-L)+2s} \rightarrow R = 1$ (-1) for SM (SUSY) particles

Searching for SUSY

http://xenon.astro.columbia.edu/ XENON100_Experiment/

Why?

- Symmetry between bosons and fermions
- Unification of forces
- Provides a dark matter candidate
- No "fine-tuning" → "natural" scenarios, hierarchy problem How?
- Colliders
 - e.g. Tevatron & LHC
- Dark Matter Searches (see talks this afternoon)
 - Direct searches
 - deep underground: e.g. CDMS, XENON
 - Indirect searches
 - e.g. Fermi/LAT, Pamela

I will mainly focus on latest results from the LHC

(ATLAS and CMS) [Also see parallel talk by C. Ohm]

RdV2013

Searches for Supersymmetry

How can we search for SUSY?

SUSY yields a rich phenomenology and a broad set of potential signatures

SUSY Particle Production at the LHC

- Gluinos, 1st & 2nd generation squarks
 - High cross sections
- 3rd generation squarks (stops, sbottoms)
 - Moderate cross sections
- Charginos, neutralinos, sleptons
 - Small cross sections, but feasible

Standard Model Backgrounds

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots

- SM processes measured with very high precision and over many orders of magnitude
- W's, Z's, and top are primary sources of background for most SUSY searches
- Backgrounds mostly estimated from data, or datadriven methods
 - Monte Carlo primarily used for validation of control regions

SUSY Signatures

Kinematic Search Variables

- A variety of discriminating quantities used in these searches
 - Total visible energy (e.g. H_T, M_{eff}), assume 2 LSPs in decay (e.g. MET, M_T, M_{T2}), exploit 2-body nature of decays (alpha_T, Razor), particle multiplicities (e.g. N_{jets}, N_{b-jets}), etc...

Inclusive Searches for Squarks and Gluinos

- Comprehensive program of inclusive searches for squarks and gluinos
- Signature: jets + MET + "X"

- e.g. bin in number of jets, b-jets
- Exploit discriminating kinematic variables
 - Each experiment has their "favorites"
 - ATLAS: M_{eff} , MET, MET significance
 - use also MJ (=Sum m(R=0.4)) in searches targeting long decay chains (arXiv:1308.1841)

– CMS: MET, H_T , alpha_T, M_{T2} , Razor

Interpretations: MSUGRA/CMSSM

 Results have historically been most commonly presented in the MSUGRA/CMSSM m₀ vs m_{1/2} plane

 \leftarrow "Higgs aware" scenario

- Shows breadth of analyses/final states explored and large gain in coverage
- M_{gluino} below ~1.35 TeV excluded for any M_{squark} [in this model]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots#SusyMSUGRASummary

Interpretations: Simplified Models

- Simplified Model Spectra (SMS)
 - Use limited set of new hypothetical particles and decays to produce a given topological signature
 - Assume 100% BR for decay chain considered
- 95% CL upper limits shown •
 - Presented in M_{LSP} vs M_{SUSY}
 - of M_{SUSY} is mass of the produced sparticle Mass considered
 - Expected, with experimental uncertainty
 - Observed, with theory uncertainty
 - Cross section limits (shown as color map)
- "Typical" systematics ۲
 - Backgrounds: analysis dependent
 - Signal: trigger efficiency, lepton efficiencies, jet energy scale, pileup, ISR, ...

Diagonal line: kinematic limit, often interpretations assume on-shell particles (e.g. W, top etc) \rightarrow kinematic limits offset from exact diagonal Closer to diagonal \rightarrow "compressed" region; a complex interplay between increasing cross section and decreasing HT, MET, etc.; increasing background and decreasing acceptance. Expected Observed hard cut-off due to production cross section*acceptance Mass of produced sparticle

SP

Direct and Gluino Mediated Squark Production

Summary of Inclusive Searches

"Best" direct squark (1st & 2nd generation) limits ~850 GeV

→ assuming eight-fold mass degeneracy (limits also for one light flavor accessible squark)

- "Best" gluino mediated limits ~ 1.2TeV
 - \rightarrow assuming 1st and 2nd generation decays for gluinos

RdV2013 Searches for Supersymmetry E. Halkiadakis

"Natural" SUSY Scenarios

- Hierarchy problem:
 - Higgs mass at the weak scale despite the presence of divergent corrections from top quark loops
 - Large cancelations are unnatural
- Solution:
 - SUSY could make this natural
 - top squark adds canceling terms
 - gluino mass should not be too large also so its contributions to the top squark are controlled.
- Leads to "natural" SUSY spectrum:
 - 3rd generation squarks part of "nuclear family", while the other generations can be heavy and decoupled
 - Some charginos and neutralinos (the higgsinos) at ~ the weak scale.

R.Barbieri & D.Pappadopulo JHEP 0910:061,2009

Searches for stops and sbottoms

• Gluino mediated searches

Large cross sections. Spectacular final states. Many jets and b-jets.

• Direct searches

 \tilde{b}/\tilde{t}

b/t

b/t

Smaller cross sections. Many decay modes. Compressed spectra can make these searches very difficult → close to indistinguishable from top background.

 $\begin{array}{c}
 p & \tilde{t} & \tilde{\chi}_{1}^{0} \\
 w & b \\
 b & W \\
 b & W \\
 b & W \\
 b & \tilde{\chi}_{1}^{0} \\
 W & b \\
 \tilde{\chi}_{1}^{0} & \tilde{\chi}_{1}^{0} \\
 In the decays involving \\
 charginos, the stop-chargino-LSP \\
 mass hierarchy is important & \tilde{\chi}_{1}^{0} \\
 \tilde{\chi}_{1}^{0} & \tilde{\chi}_{1}^{0} \\$

Gluino Mediated Stop and Sbottom Searches

 $\tilde{\chi}_1^0$

Data 2012

Multi-bottom final state \rightarrow b-jets +

MET signature

ATLAS Preliminary

10⁴

Muti-top final state \rightarrow searches use 0, 1, 2 leptons + jets + b-jets + MET

Summary: Gluino Mediated Stop and Sbottom Searches

Direct Sbottom Searches

Direct Stop Searches

- Several decay modes and final states (0, 1, 2 leptons) considered to cover range of kinematic regions
- So far 100% BR considered

Direct Stop Searches

- Challenging analyses. Dominant backgrounds from top pair production and V+jets.
- Make use of shapes of kinematic variables (e.g. MT2b) and MVA's (e.g. BDT)
- Searches target 2-body/3-body decays & on/off-shell top regions

Stop Results: $\tilde{t_1} \rightarrow c \tilde{\chi}_1^0 / \tilde{t_1} \rightarrow W b \tilde{\chi}_1^0 / \tilde{t_1} \rightarrow t \tilde{\chi}_1^0$

- Results depend on polarization of top quark
- New results on charm + LSP final state (next slide)

W

Stop Decay to Charm + LSP

1) Mono-jet signature \rightarrow use ISR jet to cover region near diagonal

Searches for Production of EWKinos and Sleptons

- Extensive set of searches for chargino and neutralino production
- Final states and search strategy depends on assumption of sleptons masses: e.g. all light, only stau light, all heavy

Signatures:

- 2 (opposite and same sign),
- 3, 4 leptons + MET
- Direct slepton production: 2 leptons + MET

24

Summary of EWKino Searches

Example 3 leptons: $e^+e^-\ell$, $\mu^+\mu^-\ell$ signal regions in bins of $M_{\ell\ell}$, M_T and MET

enriched/dominated, light/heavy CMS Preliminary $\sqrt{s} = 8$ TeV, $L_{int} = 19.5$ fb⁻¹ slepton scenarios 75 GeV<M₁₊₁<105 GeV $M_{l^+l^-} < 75 \text{ GeV}$ $M_{I+I} > 105 \text{ GeV}$ M_T>160 GeV events / 50 GeV Similar results also from ATLAS e.g. ATLAS-CONF-2013-028, 35, 36 16 14 12 50 Ge Channels: CMS Preliminary $\sqrt{s} = 8 \text{ TeV},$ $= 19.5 \text{ fb}^{-1}$ e±e[∓]e 800 [GeV] e±e∓µ , (*ĩ*, BF(*l*⁺*l*⁻)=0.5) μ±μ[‡]e 700 μ±μ∓μ 150 200 E_T^{miss} [GeV] 100 150 $\widetilde{\chi}_{l}^{\pm}$, ($\widetilde{l}_{\mathsf{B}}$, $\mathsf{BF}(l^{+}l^{-})=1$) E_{T}^{miss} [GeV] E_T^{miss} [GeV] 120 GeV<M_T<160 GeV £^{°, ۲} 600 Data events / 50 GeV $\tilde{\chi}_{a}^{0} \tilde{\chi}_{.}^{\pm}$, (no \tilde{l} , BF(WZ)=1 50 Ge¹ New Higgs events / 50 500 ΖZ $pp \rightarrow \tilde{\chi}^+_{,i} \tilde{\chi}_{,i}$, $(\tilde{l}_{,i}, \mathsf{BF}(l^+l_{,i}))$ Zγ* 400 WZ Non-prompt 300 Rare SM **8**0 $\begin{array}{c}150 \quad 200 \\ E_T^{miss} \left[\text{GeV} \right]\end{array}$ 100 150 200 E_T^{miss} [GeV] 100 ¹⁵⁰ 200 E_T^{miss} [GeV] 100 Total bkg 200 ∧¹⁶⁰ 140 120 120 100 80 60 uncertainty 5900 3800 50 Ge $M_T < 120 \text{ GeV}$ 870 100 vents/ _600 €1500 5300 2400 es 300 200 100 200 300 500 600 700 800 400 20 100 $m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_1^0}$ [ĞeV] $m_{\gamma} = 0.5 m_{\chi^{\pm}} + 0.5 m_{\chi^{0}}$ 2<mark>5</mark>0 0<mark>1</mark> 100 150 200 E_T^{miss} [GeV] 100 150 200 E^{miss}_T [GeV] 100 150 200 E_T^{miss} [GeV] CMS-PAS-SUS-13-006 RdV2013 Searches for Supersymmetry E. Halkiadakis 25

Results benefit from combining

Considered flavor democratic, tau

exclusive channels

RPV Searches

- Program of searches for RPV: leptonic, LQD and hadronic RPV
- No dark matter candidate, but could still address naturalness
- Low MET final states; resonances

• e.g. Summary of RPV searches from ATLAS. CMS similar.

• I will focus on two new results on hadronic RPV

RdV2013 Searches for Supersymmetry

Long Lived Particles

- Predicted in many extensions of the SM: GMSB, "split" SUSY, hidden valley models, etc.
- Several ways to look for them; typically need specialized algorithms/tools
 - Displaced tracks
 - Highly ionizing tracks
 - Out-of-time particles
 - Non-pointing photons

Long-lived particles	Direct $\tilde{X}_1^+ \tilde{X}_1^-$ prod., long-lived \tilde{X}_1^\pm Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{X}_1^0 \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_1^0 $\tilde{X}_1^0 \rightarrow q \mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0	Yes Yes - Yes Yes	20.3 22.9 15.9 4.7 4.4	270 GeV 857 GeV 857 GeV 230 GeV 700 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{+}) \cdot m(\tilde{\chi}_{1}^{0}) = 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{+}) = 0.2 \text{ ns} \\ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s} \\ 10 < \tan \beta < 50 \\ 0.4 < \tau(\tilde{\chi}_{1}^{0}) < 2 \text{ ns} \\ 1 \ \text{mm} < c\tau < 1 \ \text{m}, \ \tilde{g} \ \text{decoupled} \end{array}$
-------------------------	--	--	----------------------------------	-------------------------------	------------------------------------	--	---

• I will focus on one new result:

Long-lived charginos → disappearing tracks [ATLAS]

Search for Disappearing Tracks

- New
- Model: charginos and neutralinos almost mass degenerate (∆m =160MeV)
 - e.g. in Anomaly Mediated SUSY Breaking (AMSB)
 - Metastable chargino with significant lifetime (τ ~0.2ns or 6cm)
- Characteristic: disappearing tracks in inner detector
 - i.e. identify tracks with no associated hits in the outer tracker
- M_{chargino} < 270 GeV excluded for model assumptions above

The Big Picture

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary

RdV2013 Searches for Supersymmetry

Summary

Putting it all together:

- No evidence for SUSY so far.
- Stringent limits placed.
 - With caveats; simplified models
- But, the search for SUSY is far from over!
- We are leaving no stone unturned
- At the LHC:
 - Focusing more and more on "difficult regions", e.g. compressed spectra
 - Combinations of channels will help with big picture and conclusions from 8TeV run
 - Preparing for 2015, and gearing up for (hopefully) discovery!

Backup

Spectacular Event with 3 Leptons and 3 b-tags

RdV2013 Searches for Supersymmetry

Treatment of ISR

 Signal efficiency for compressed spectra relies on ISR jet production

- At CMS, we studied with data how well the MC accounts for this effect
 - Different initial state partons → consistent results
- Results now used as a systematic for signal

 ATLAS and some CMS analyses also estimate ISR systematic by varying normalization and factorization scales in MC

RdV2013 Searches for Supersymmetry

Searches for Dark Matter Pair Production

 How? Use QED/QCD initial state radiation (ISR) of photon, jet or a W/Z boson to "tag" DM events

Both CMS and ATLAS experiments use such searches to set limits on spin independent (vectorlike) and spin-dependent (axial-vector-like) scattering

Different coupling to u, d quarks

Comparisons to DM experiments

See next talk by G. Brooijmans for more details

New

d

Measurement of $B_s \rightarrow \mu\mu$

- $B_S \rightarrow \mu \mu$ rare process in the SM
- Sensitive to new physics, e.g. SUSY
- New results from CMS and LHCb experiments!
 - First observation of $B_s \rightarrow \mu \mu$!

CMS 25 fb⁻¹

$$BR(B_S^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9} \ 4.3 \ \sigma$$

LHCb 3 fb⁻¹

 $BR(B_s^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}) \times 10^{-9}$ 4.0 o

Combined:

$$BR(B_S^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

RdV2013 Se

Searches for Supersymmetry

Best Mass Limits Summary

С,												
SUSY Searches, O. Buchmüll	Direct squark	$ ilde q o q \chi_1^0$	$ ilde{u}_L o q \chi_1^0$	$ ilde{b} o b \chi_1^0$	$\tilde{t} \rightarrow t \gamma$	ζ_{1}^{0}	coloured sparticle					
	Best limit: [GeV]	~850	~500	~650	~65	0	production					
	No limit for M _{LSP} [GeV]	~ 300	~120	~270	~26	60	(from O. Buchmueller, EPS2013			PS2013)		
3 Direct	Direct squark	${ ilde g} o q {ar q} \chi_1^0$	${ ilde g} o b {ar b} \chi_1^0$	$\tilde{g} ightarrow t \bar{t} \chi$	ζ ⁰ ₁	M _{stop}	Stop -M _{Lsp} < M _{top}	${ ilde t} o c \chi_1^0$	$ ilde{t} o W b \chi_1^0$			
EPS 201	Best limit: [GeV]	~1200	~1200	~1400)	B	est limit: [GeV]	~240	~320			
	No limit for M _{LSP} [GeV]	~480	~650	~700		No M _l	o limit for _{LSP} [GeV]	~210	~190			

EWK sparticle production

$\begin{array}{c c} {\rm Direct} & \\ {\rm slepton} & \tilde{l}_L \rightarrow l^\pm \chi_1^0 & \tilde{l}_R \rightarrow l^\pm \chi_1^0 \end{array}$	$\chi_1^\pm\chi_2^0$ light $ ilde{l}$	<i>heavy l̃</i> ∼300 ~60
Best limit: ~300 ~240 [GeV]	Best limit: ~750 [GeV]	
No limit for ~150 ~90 M _{LSP} [GeV]	No limit for ~350 M _{LSP} [GeV]	
Dd//2012 Soarchoo for Supersymmetry		

apersymmetry

SMS Limits Summary

Recently Shown at Snowmass

(from B. Heinemann)

- With 300 fb⁻¹ will reach about 2 TeV in gluino mass both in top- and b-decay signatures
 - 3000 fb⁻¹ study ongoing

Top squark discovery potential

CMS Preliminary

- Challenging analysis due to large top background
 - Systematic uncertainties matter
- 300 fb⁻¹:
 - Discovery up to 800-900 GeV in direct production
- 3000 fb⁻¹:
 - Reach improved by ~140 GeV in m(stop) and ~100 GeV in m(LSP)
- Expect further improvements with reoptimization

Future Prospects for Weak SUSY Production

- for m(LSP)<100-200 GeV</p>
- Dramatic improvement with HL-LHC:
 - Reach >800 GeV for m(LSP)<300 GeV</p>

31