Study of Higgs Boson Production in Fermionic Decay Modes

Heather M. Gray, CERN on behalf of the ATLAS, CMS, CDF and D0 Collaborations

Introduction

- One year after the discovery of a new boson with mass 125 GeV
 - This particle is a Higgs boson
- But is it really the Standard Model Higgs boson ?
 - Long-term program to study and measure properties
- Measuring the **coupling to fermions** is a key component
 - Are the fermionic couplings **consistent with SM** ?
 - Is there just **one particle** coupling to both fermions and bosons ?

Does the Higgs boson couple to Fermions ?

- Short answer: Yes !
- Photons are massless so cannot couple to the Higgs
- Observed decay to yy
 - Dominant contribution from top quark loop

- More complete answer:
 - Not necessarily, new particles could contribute in the loop
- Need direct measurement of fermionic coupling

Direct Measurements of Fermionic Couplings

- Direct = measure fermions experimentally
- Two possibilities for direct measurement
 - decays to fermions (ττ, bb or μμ)
 - produced in association with fermions (ttH)
- Discuss current status and highlight recent Tevatron and LHC results

Associated ttH Production

Higgs decays to	
fermions	

		BR@125 GeV	Resolution
	bb	57%	10%
	π	6%	15%
	μμ	0.02%	2%

Reconstructing **t**'s and b-jets

- **Sophisticated** (multivariate) algorithms to identify b-jets and τ's required to probe fermionic sector
- b-tagging algorithms mostly exploit b-quark lifetime
 - decay displaced from primary interaction
- Hadronic taus identified by decay to 1 or 3 collimated charged hadrons

Probing Fermionic Couplings

 μ values quoted for m_H=125 GeV Run 1 dataset = 5 fb⁻¹ @ 7 TeV + 20-21 fb⁻¹ @ 8 TeV Production in association with a W/Z boson is the most powerful channel to search for decays to b-quarks

1(bb)

- Main challenges are triggering and large and uncertain backgrounds
 - Trigger using leptonic W/Z decays or MET
 - Boost (V pT) to control backgrounds
- Select events containing 0, 1 or 2 leptons (W or Z decay)
- Search for peak in dijet invariant mass,
 mьь, distribution
- Categories or BDT discriminants to increase sensitivity

Background Modelling

→ correct for observed discrepancies in current MCs

+ Data 2012

Multijet

ww

W+I

W+cl W+cc

W+bl Z+l ATLAS Preliminary

1 lep, 2 jets, 0 tag

No Ad Correction

√s = 8 TeV 🖌 L dt = 20.3 fb[°]

Events

300

100

Data/MC

ATLAS: mismodelling of **V+jets Δφ** in LO Sherpa Derive **correction** from 0-tag control region Also improves **p**^V distribution

CMS: **W+jet cross-section** vs **number of b-jets** in Madgraph Corrected with separate scale factors

	Process	$W(\ell \nu)H$	$Z(\nu\nu)H$
	Low <i>p</i> _T		
	W0b	$1.03 \pm 0.01 \pm 0.05$	$0.83 \pm 0.02 \pm 0.04$
	W1b	$2.22 \pm 0.25 \pm 0.20$	$2.30 \pm 0.21 \pm 0.11$
	W2b	$1.58 \pm 0.26 \pm 0.24$	$0.85 \pm 0.24 \pm 0.14$
Inte	ermediate $p_{\rm T}$		
	W0b	$1.02 \pm 0.01 \pm 0.07$	$0.93 \pm 0.02 \pm 0.04$
	W1b	$2.90 \pm 0.26 \pm 0.20$	$2.08 \pm 0.20 \pm 0.12$
	W2b	$1.30 \pm 0.23 \pm 0.14$	$0.75 \pm 0.26 \pm 0.11$
	High <i>p</i> _T		
	W0b	$1.04 \pm 0.01 \pm 0.07$	$0.93 \pm 0.02 \pm 0.03$
	W1b	$2.46 \pm 0.33 \pm 0.22$	$2.12 \pm 0.22 \pm 0.10$
	W2b	$0.77 \pm 0.25 \pm 0.08$	$0.71 \pm 0.25 \pm 0.15$

Similar observation for Z+jets

Diboson Validation

 Analysis techniques validated by diboson (WZ/ZZ) measurements

Tevatron:
$$\mu_{VZ} = 0.68 \pm 0.20$$

ATLAS: $\mu_{VZ} = 0.9 \pm 0.2$
CMS: $\mu_{VZ} = 1.19^{+0.28}_{-0.23}$

VH(bb) Results

3.1σ observed significance (Tevatron combination)

Tevatron:
$$\mu = 1.59^{+0.69}_{-0.72}$$

ATLAS: $\mu = 0.2^{+0.7}_{-0.6}$
CMS: $\mu = 1.0 \pm 0.5$

VH(bb) Results by Channel

11

Small theory systematics for VH production

VBF H(bb)

- CMS VBF H(bb) analysis exploits dedicated bb VBF trigger and event selection
 - quark-gluon discriminant for non b-jets

Quark-Gluon Discriminant

- reject events with central hadronic activity
- MVA discriminant defines 5 categories by signal purity

Category Discriminant

Probing Fermionic Couplings

H→ττ Categories

- Three channels by τ-decay
 - lep-lep (12%)
 - lep-had (46%)
 - had-had (42%)
- Analysis categories
 - VBF: 2 jets with large $\Delta \eta \& m_{jj}$
 - boosted Higgs pT
 - 1-jet
 - **0-jet** (ATLAS, CMS for syst constraint)
 - VH (CMS only)
- Search for an excess in the invariant mass of the two τ candidates, $m_{\tau\tau}$

H→ττ Backgrounds

16

H→ττ Results

CMS: ττ+bb* 3.4σ

17

• ATLAS: $\mu = 0.7 \pm 0.7$ (4.6 + 13 fb⁻¹)

*CMS-PAS-HIG-12-044

- CMS: $\mu = 1.1 \pm 0.4$ (Run 1 dataset)
- D0 Limit (9.7 fb⁻¹): 10.8 x SM (observed), 7.3 x SM (expected)
- CDF Limit (6 fb⁻¹): 16.4 x SM (observed), 16.9 x SM (expected)

H→ττ Results by Category

- Consistency between channels and categories
- Most powerful category is 1-jet
- VBF sensitivity from 2-jet category

Probing Fermionic Couplings

Search for $H \rightarrow \mu \mu$

- Check universality of Higgs couplings: μμ vs ττ
- Tiny branching ratio, large background but excellent resolution
- **Two** isolated, opposite-sign **muons**, $p_T > 25$, 15 GeV
- Central ($|\eta| < 1.0$) and non-central **categories**
- Fit $m_{\mu\mu}$ with **analytical** signal and background **shapes**

H→µµ Results

- ATLAS (20.7 fb⁻¹ of data)
 - Limits: 9.8 x SM (observed); 8.2 x SM (expected)
- Significantly more data needed to reach SM sensitivity

21

Probing Fermionic Couplings

• Very challenging mode

ttН

- Small cross-section, large backgrounds
- Large theoretical uncertainties on key backgrounds
- Provides a direct probe of Higgs-top coupling
- Reconstruct top decays in lepton+jets and dilepton channels

23

- Boost sensitivity by including as many decays as possible
 - bb, ττ, γγ, leptons ...

ttH(bb)

- N_{jet} and $N_{b\text{-}jet}$ categories to constrain backgrounds and systematics and isolate signal
 - Most powerful category: 4 b-tagged jets + 2 additional jets
- Main challenge: ttbb background modelling
- Discriminating variables: BDT, H_T or m_{bb}

ttH(bb) Results

- ATLAS (4.7fb⁻¹ @ 7 TeV)
 - Limits: 13.1 x SM (observed); 10.5 x SM (expected)
- CMS (full Run 1 dataset)
 - Limits: 5.2 x SM (observed); 4.1 x SM (expected)

25

- Select 2 top candidates; 2 photons
- Parametric fit to estimate backgrounds
- ATLAS (20.3 fb-1):

 $ttH(\gamma\gamma)$

- 5.3 x SM (observed); 6.4 x SM (expected)
- CMS (19.6 fb-1):
 - 5.4 x SM (observed); 5.3 x SM (expected)

ττ

p-value $(\chi^2) = 0.20$

0.2 0.4 0.6 0.8 1

BDT output

15

10

5

0⊡ -1

Data/MC

Fit $\pm 1\sigma$

Fit ±20

-0.8 -0.6 -0.4 -0.2 0

- Limits: **3.4 x SM (observed)**, 2.7 x SM (expected)
- Further improvements from additional channels (e.g. leptons)
- Can the current dataset reach SM sensitivity ?

Indirect Evidence for Fermionic Coupling

- Fits used to study Higgs properties provide indirect evidence for coupling to fermions
- Include most Higgs decay channels
- Assume universal fermionic and bosonic couplings and no additional non-SM particles
- Both ATLAS and CMS have
 >5σ evidence for coupling to fermions

Searching beyond the SM

 Fermionic decays provide constraints on the MSSM in the context of 2 Higgs doublet models

 Fermionic sector currently an exciting and active part of the Higgs program

CMS: ττ+bb 3.4σ

30

- Presented recent results from ATLAS, CMS, CDF and D0
 - VH(**bb**): ~2σ (LHC); ~3σ (Tevatron)
 - VBF(**bb**): < 3.6 x SM
 - **ττ**: ~3σ
 - µµ: <10 x SM
 - **ttH** (bb, $\gamma\gamma$ and $\tau\tau$): <3.4 x SM
- Summary: direct > 3σ (evidence); indirect > 5σ (observation)
- But more results still to come from ongoing Run 1 analyses
 - And 2015 is just around the corner...

Question: Does the Higgs couple to fermions ?

Answer: **Most likely**, but need to **wait** just a bit longer for conclusive evidence

- Fermionic Decays
 - bb
 - VH(bb): ATLAS-CONF-2013-079, CMS-PAS-HIG-13-012, Phys. Rev. Lett. 109, 071804 (2012) (Tevatron)

32

- WZ/ZZ: http://arxiv.org/abs/1203.3782 (Tevatron)
- VBF(bb): CMS-PAS-HIG-13-011
- ττ: ATLAS-CONF-2012-160, CMS-PAS-HIG-13-003
- μμ: ATLAS-CONF-2012-010
- MSSM: bH(bb): <u>http://arxiv.org/pdf/1302.2892.pdf</u> (CMS), ττ: <u>http://arxiv.org/pdf/1104.1619.pdf</u> (CMS), μμ+ττ: <u>http://arxiv.org/abs/</u> <u>1211.6956</u> (ATLAS)
- Fermionic Production
 - ttH
 - ttH(bb): CMS-PAS-HIG-13-019, ATLAS-CONF-2012-135
 - ttH(γγ): ATLAS-CONF-2013-080, CMS-PAS-HIG-13-015