Neutrinos and the Flavour Puzzle

Belén Gavela
(Alonso, Gavela, D.Hernandez, Merlo, Rigolin)
(Alonso, Gavela, Isidori, Maiani)
in Bisibles
neutrinos, dark matter \& dark energy physics

Cabibbo's dream

Belén Gavela

(Alonso, Gavela, D.Hernandez, Merlo, Rigolin)
(Alonso, Gavela, Isidori, Maiani)

Neutrino light on flavour?

Neutrinos lighter because Majorana?

Within seesaw, the size of v Yukawa couplings is alike to that for other fermions:

$\Lambda \leq$ GUT

Píar Hernandez drawings
Minkowski; Gell-Mann, Ramond Slansky; Yanagida, Glashow...

Leptons
$V_{\text {PMNS }}=\left(\begin{array}{ccc}0.8 & 0.5 & \sim 9^{\circ} \\ -0.4 & 0.5 & -0.7 \\ -0.4 & 0.5 & +0.7\end{array}\right)$
$V_{\text {CKM }}=\left(\begin{array}{ccc}\sim 1 & \lambda & \lambda^{3} \\ \lambda & \sim 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & \sim 1\end{array}\right) \lambda \sim 0.2$

Perhaps also because v_{s} may be Majorana?
-Dynamical Yukawas

Yukawa couplings are the source of flavour in the SM

Yukawa couplings are a source of flavour in the v-SM

May they correspond to dynamical fields
 (e.g. vev of fields that carry flavor)?

Instead of inventing an ad-hoc symmetry group,

why not use the continuous flavour group

suggested by the SM itself?

We have realized that the different pattern for

quarks versus leptons

may be a simple consequence of the continuous flavour group of the SM (+ seesaw)

We have realized that the different pattern for

quarks versus leptons

may be a simple consequence of the

continuous flavour group of the SM (+ seesaw)

Our guideline is to use:

- maximal symmetry
- minimal field content

Global flavour symmetry of the SM

* QCD has a global -chiral- symmetry in the limit of massless quarks. For n generations:

$$
\begin{aligned}
\mathcal{L}_{Q C D}^{\text {temions }}=\bar{\Psi}(i \not D-m) \Psi \rightarrow \bar{\Psi} i \not D \Psi= & \overline{\Psi_{L}} i \not D \Psi_{L}+\overline{\Psi_{R}} i \not D \Psi_{R} \\
& S U(n)_{L} \times S U(n)_{R} \times U(1)^{\prime} s
\end{aligned}
$$

* In the SM, fermion masses and mixings result from Yukawa couplings. For massless quarks, the SM has a global flavour symmetry:

Quarks

$$
\mathscr{L} . \text { SM }{ }_{\psi=Q_{L}}^{\text {fermions }} i \sum_{\text {[Georgi, Chivukula, 1987] }}^{D_{R}} \bar{\psi} \not D \psi . \quad G_{\text {flavour }}=U(n)_{Q_{L}} \times U(n)_{U_{R}} \times U(n)_{D_{R}}
$$

This continuous symmetry of the SM

$$
\mathbf{G}_{\text {flavour }}=U(n)_{Q_{L}} \times U(n)_{U_{R}} \times U(n)_{D_{R}}
$$

is phenomenologically very successful and

at the basis of Minimal Flavour Violation
in which the Yukawa couplings are only spurions

This continuous symmetry of the SM

$$
\mathbf{G}_{\text {flavour }}=U(n)_{Q_{L}} \times U(n)_{U_{R}} \times U(n)_{D_{R}}
$$

is phenomenologically very successful and

at the basis of Minimal Flavour Violation
in which the Yukawa couplings are only spurions

$$
\frac{\mathbf{Y}_{\alpha \beta}{ }^{+} \mathbf{Y}_{\delta \gamma}}{\boldsymbol{\Lambda}_{\mathbf{f}}{ }^{2}} \overline{\mathbf{Q}}_{a} \gamma_{\mu} \mathbf{Q}_{\beta} \overline{\mathbf{Q}}_{\gamma} \gamma^{\mu} \mathbf{Q}_{\delta}
$$

One step further

(Alonso, Gavela, D.Hernandez, Merlo, Rigolin, 2012-2013)
(Alonso, Gavela, Isidori, Maiani, 2013)
\longleftarrow Quarks \square

For this talk:

each Ysm -- >one single field \mathcal{Y}

quarks:

$Y_{S M} \sim \frac{\langle y>}{\Lambda_{f}}$

Anselm+Berezhiani 96; Berezhiani+Rossi 01... Alonso+Gavela+Merlo+Rigolin 11...

$\left.\mathrm{G}_{\text {flavour }}=\mathbf{S U (3)}\right)_{\mathrm{QL}} \times \mathbf{S U}(\mathbf{3})_{\mathrm{UR}} \times \mathbf{S U}(\mathbf{3})_{\mathrm{D}_{\mathrm{R}}}$

For this talk:

each Ysm -- >one single field y

quarks:

$$
Y_{S M} \sim \frac{\langle y\rangle}{\Lambda_{\mathrm{f}}}
$$

$$
y_{d \sim(3,1, \overline{3})} \quad \text { "bifundamentals" } \quad y_{u} \sim(3, \overline{3}, 1)
$$

$$
\mathrm{G}_{\text {flavour }}=\mathrm{SU}(3)_{\mathrm{Q}_{\mathrm{L}}} \times \mathrm{SU}(3)_{\mathrm{U}_{\mathrm{R}}} \times \mathrm{SU}(3)_{\mathrm{D}_{\mathrm{R}}}
$$

$\left.\mathrm{G}_{\text {flavour }}=\mathbf{S U (3)}\right)_{\mathrm{QL}} \times \operatorname{SU}(3)_{\mathrm{UR}} \times \operatorname{SU}(3)_{\mathrm{Dr}} \ldots$

$$
y_{d} \sim(3,1, \overline{3}) \quad y_{u} \sim(3, \overline{3}, 1)
$$

$\operatorname{civ}^{\mathrm{V}}\left(\mathrm{y}_{\mathrm{d}}, y_{\mathrm{u}}\right)$?

$\mathrm{G}_{\text {flavour }}=\mathrm{SU}(3)_{\mathrm{Q}_{L}} \times \mathrm{SU}(3)_{\mathrm{U}_{\mathrm{R}}} \times \mathrm{SU}(3)_{\mathrm{D}_{\mathrm{R}}}$

$$
y_{d \sim(3,1, \overline{3})}
$$

$$
y_{u \sim(3, \overline{3}, 1)}
$$

* Does the minimum of the scalar potential justify the observed masses and mixings?

$\mathbf{v}\left(y_{d}, y_{u}\right)$

* Invariant under the SM gauge symmetry
* Invariant under its global flavour symmetry Gflavour

$\mathrm{G}_{\text {flavour }}=\mathrm{U}(3)_{\mathrm{QL}_{\mathrm{L}}} \times \mathrm{U}(3)_{\mathrm{U}_{\mathrm{R}}} \times \mathbf{U}(3)_{\mathrm{D}_{\mathrm{R}}}$

$\mathbf{v}\left(y_{d}, y_{u}\right)$

* Invariant under the SM gauge symmetry
* Invariant under its global flavour symmetry Gflavour

$$
\mathrm{G}_{\text {flavour }}=\mathrm{U}(3)_{\mathrm{Q}_{\mathrm{L}}} \times \mathrm{U}(3)_{\mathrm{UR}_{\mathrm{R}}} \times \mathrm{U}(3)_{\mathrm{D}_{\mathrm{R}}}
$$

There are as many independent invariants I as physical variables

$$
\mathbf{v}\left(y_{\mathbf{d}}, y_{\mathbf{u}}\right)=\mathbf{v}\left(\mathbf{I}\left(y_{\mathrm{d}}, y_{\mathbf{u}}\right)\right)
$$

Minimization

a variational principle fixes the vevs of the Fields

$$
\delta V=0
$$

$$
\sum_{j} \frac{\partial I_{j}}{\partial y_{i}} \frac{\partial V}{\partial I_{j}} \equiv J_{i j} \frac{\partial V}{\partial I_{j}}=0
$$

masses, mixing angles etc.
This is an homogenous linear equation; if the rank of the Jacobian $J_{i j}=\partial I_{j} / \partial y_{i}$, is:

Maximum:
then the only solution
is:

$$
\frac{\partial V}{\partial I_{j}}=0,
$$

Less than Maximum: then the number of equations reduces to a number equal to the rank

Boundaries

for a reduced rank of the Jacobian,

$$
\operatorname{det}(J)=0
$$

there exists (at least) a direction δy_{i} for which
a variation of the field variables does not vary the invariants

$$
\delta I_{j}=\sum_{i} \frac{\partial I_{j}}{\partial y_{i}} \delta y_{i}=0
$$

that is a Boundary of the I-manifold
[Cabibbo, Maiani, I969]
Boundaries Exhibit Unbroken Symmetry [Michel, Radicati, 1969]
(maximal subgroups)

Bi-fundamental Flavour Fields

For quarks: 10 independent invariants (because 6 masses +3 angles +1 phase) that we may choose as

$$
\begin{array}{rlrl}
I_{U} & =\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right], & I_{D} & =\operatorname{Tr}\left[\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right], \\
I_{U^{2}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right)^{2}\right], & I_{D^{2}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \\
I_{U^{3}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right)^{3}\right], & I_{D^{3}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{3}\right], \\
I_{U, D} & =\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right], & I_{U, D^{2}} & =\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \\
I_{U^{2}, D} & =\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], & I_{(U, D)^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right],
\end{array}
$$

Bi-fundamental Flavour Fields

$$
\begin{array}{cc}
I_{U}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right], & I_{D}=\operatorname{Tr}\left[\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right], \\
I_{U^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right)^{2}\right], & I_{D^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \quad \begin{array}{c}
\text { only } \\
I_{U^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{U}\right]=\sum y_{\alpha}^{2}\right. \\
\left.\left.\mathcal{Y}_{U}^{\dagger}\right)^{3}\right],
\end{array} \\
I_{D^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{3}\right], \\
I_{U, D}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right], & I_{U, D^{2}}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \\
I_{U^{2}, D}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], & I_{(U, D)^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right] . \\
\text { masses and mixing }
\end{array}
$$

Jacobian Analysis: Mixing

$$
\begin{aligned}
\operatorname{det}\left(J_{U D}\right)= & \left(y_{u}^{2}-y_{t}^{2}\right)\left(y_{t}^{2}-y_{c}^{2}\right)\left(y_{c}^{2}-y_{u}^{2}\right) \\
& \left(y_{d}^{2}-y_{b}^{2}\right)\left(y_{b}^{2}-y_{s}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right) \\
& \times\left|V_{u d}\right|\left|V_{u s}\right|\left|V_{c d} \|\left|V_{c s}\right|\right.
\end{aligned}
$$

the rank is reduced the most for:

$V_{C K M}=$ PERMUTATION

no mixing: reordering of states
(Alonso, Gavela, Isidori, Maiani 2013)

Quark Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern arises:

$$
\text { Gflavour (quarks) : } \quad U(3)^{3} \rightarrow U(2)^{3} \times U(1)
$$

giving a hierarchical mass spectrum without mixing

$$
<\mathcal{Y}_{\mathrm{D}}>=\Lambda_{f}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & y_{b}
\end{array}\right), \quad<\mathcal{Y}_{\mathrm{U}}>=\Lambda_{f}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & y_{t}
\end{array}\right)
$$

a good approximation to the observed
Yukawas to order $\left(\lambda_{c}\right)^{2}$

And what happens for leptons?

Any difference with Majorana neutrinos?

Global flavour symmetry of the SM + seesaw

* In the SM, for quarks the maximal global symmetry in the limit of massless quarks was:

$$
\mathscr{L}_{\mathrm{sM}}^{\text {pants }}=i \sum_{\psi=Q_{L}}^{D_{R}} \bar{\psi} \not D \psi . \quad \text { Gflavour }^{\text {min }}=U(n)_{Q_{L}} \times U(n)_{U_{R}} \times U(n)_{D_{R}}
$$

* In SM + type I seesaw, for leptons

$$
\mathcal{L}=\mathcal{L}_{S M}+i \overline{N_{R}} \not N_{R}-\left[\overline{N_{R}} Y_{N} \tilde{\phi}^{\dagger} \ell_{L}+\frac{1}{2} \overline{N_{R}} M N_{R}^{c}+\text { h.c. }\right]
$$

the maximal leptonic global symmetry in the limit of massless light leptons is

$$
U(n)_{L} \times U(n)_{E_{R}} \times O(n)_{N_{R}}
$$

-> degenerate heavy neutrinos

Bi-fundamental Flavour Fields

Physical parameters
 =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$
\begin{gathered}
\mathcal{Y}_{\nu}=\Lambda_{f} \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \quad \mathcal{Y}_{E}=\Lambda_{f} \mathbf{y}_{E} \\
\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger}=1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger}=1 \\
* \mathrm{~m}_{\mathrm{e}, \mu, \mathrm{~T}}=\mathrm{v} \mathrm{y}_{\mathrm{E}}
\end{gathered}
$$

*But the relation of \mathscr{Y}_{ν} with light neutrino masses is through

$$
\mathrm{m}_{\mathrm{v}}=\mathrm{Y} \frac{\mathrm{v}^{2}}{\mathrm{M}} \mathbf{Y}^{\mathrm{T}}
$$

Bi-fundamental Flavour Fields

Physical parameters
 =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$
\begin{gathered}
\mathcal{Y}_{\nu}=\Lambda_{f} \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \quad \mathcal{Y}_{E}=\Lambda_{f} \mathbf{y}_{E} \\
\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger}=1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger}=1 \\
* \mathrm{~m}_{\mathrm{e}, \mu, \mathrm{~T}}=\mathrm{v} \mathrm{y}_{\mathrm{E}}
\end{gathered}
$$

*But the relation of \mathscr{Y}_{ν} with light neutrino masses is through
$U_{P M N S} \mathbf{m}_{\nu} U_{P M N S}^{T}=\frac{v^{2}}{2 M} \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R} \mathcal{U}_{R}^{T} \mathbf{y}_{\nu} \mathcal{U}_{L}^{T}$,

Bi-fundamental Flavour Fields

Physical parameters
 =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$
\begin{gathered}
\mathcal{Y}_{\nu}=\Lambda_{f} \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \quad \mathcal{Y}_{E}=\Lambda_{f} \mathbf{y}_{E} \\
\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger}=1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger}=1 \\
* \mathrm{~m}_{\mathrm{e}, \mu, \mathrm{~T}}=\mathrm{v} \mathrm{y}_{\mathrm{E}}
\end{gathered}
$$

*But the relation of \mathscr{Y}_{2} with light neutrino masses is through
$U_{P M N S} \mathbf{m}_{\nu} U_{P M N S}^{T}=\frac{v^{2}}{2 M} \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R} \mathcal{U}_{R}^{T} \mathbf{y}_{\nu} \mathcal{U}_{L}^{T}$,

* For instance for two generations: $\mathrm{O}(2)_{\mathrm{NR}}$
e.g. two families

Generically, $\mathbf{O}(2)$ allows :

- one mixing angle maximal
- one relative Majorana phase of $\pi / 2$
- two degenerate light neutrinos

Now for three generations and

considering all

possible independent invariants

easier using the bi-unitary parametrization as we did for quarks

Number of Physical parameters $=$ number of Independent Invariants 15 invariants for $G_{\text {flavour (leptons) }}=U(3)_{L} \times U(3)_{E_{R}} \times O(3)_{N_{R}}$

Leptons

$$
\begin{array}{rlrl}
I_{E} & =\operatorname{Tr}\left[\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], & I_{\nu} & =\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right] \\
I_{E^{2}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right], & I_{\nu^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{2}\right] \\
I_{E^{3}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{3}\right], & & I_{\nu^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{3}\right]
\end{array}
$$

$$
\begin{aligned}
& \hline I_{L}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], \\
& I_{L^{2}}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right] \\
& I_{L^{3}}=\operatorname{Tr}\left[\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{2}\right], \\
& I_{L^{4}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right],
\end{aligned} \quad \begin{aligned}
& I_{R}=\operatorname{Tr}\left[\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}\right], \\
& I_{R^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}\right)^{2} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}\right], \\
& I_{R^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}\right)^{2}\right], \\
& U_{\mathrm{R}} \text { and eigenvalues }
\end{aligned}
$$

$$
I_{L R}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], \quad I_{R L}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{E}^{*} \mathcal{Y}_{E}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right]
$$

New Invariants wrt Quarks

Number of Physical parameters $=$ number of Independent Invariants 15 invariants for $G_{\text {flavour (leptons) }}=U(3)_{L} \times U(3)_{E_{R}} \times O(3)_{N_{R}}$

Leptons

$$
\begin{array}{rlrl}
I_{E} & =\operatorname{Tr}\left[\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], & I_{\nu} & =\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right] \\
I_{E^{2}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right], & I_{\nu^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{2}\right] \\
I_{E^{3}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{3}\right], & & I_{\nu^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{3}\right]
\end{array}
$$

$$
\begin{array}{ll}
I_{L}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], & I_{R}=\operatorname{Tr}\left[\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}\right)^{\mathrm{T}}\right] \\
I_{L^{2}}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right], & I_{R^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}\right)^{2} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}\right] \\
I_{L^{3}}=\operatorname{Tr}\left[\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{2}\right], & I_{R^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}\right)^{2}\right] \\
I_{L^{4}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right], & U_{\mathrm{R}} \text { and eigenvalues } \\
U_{\mathrm{L}} \text { and eigenvalues } &
\end{array}
$$

$$
I_{L R}=\operatorname{Tr}\left[\mathcal{\nu}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], \quad I_{R L}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{E}^{*} \mathcal{Y}_{E}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right]
$$

New Invariants wrt Quarks

Number of Physical parameters $=$ number of Independent Invariants 15 invariants for $\mathrm{G}_{\text {flavour (leptons) }}=U(3)_{L} \times U(3)_{E_{R}} \times O(3)_{N_{R}}$

Leptons

$$
\begin{array}{rlrl}
I_{E} & =\operatorname{Tr}\left[\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], & I_{\nu}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right] \\
I_{E^{2}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right], & I_{\nu^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{2}\right] \\
I_{E^{3}} & =\operatorname{Tr}\left[\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{3}\right], & & I_{\nu^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{3}\right]
\end{array}
$$

$$
\begin{aligned}
& I_{L}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right] \\
& I_{L^{2}}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right] \\
& I_{L^{3}}=\operatorname{Tr}\left[\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)^{2}\right] \\
& I_{L^{4}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right)^{2}\right] \\
& U_{\mathrm{L}} \text { and eigenvalues }
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Tr}\left(\mathbf{y}_{\nu}^{2} \mathcal{U}_{R} \mathcal{U}_{R}^{T} \mathbf{y}_{\nu}^{2} \mathcal{U}_{R}^{*} \mathcal{U}_{R}^{\dagger}\right) \\
I_{R^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}\right)^{2} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}\right] \\
I_{R^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}\right)^{2}\right]
\end{gathered}
$$

U_{R} and eigenvalues

$$
I_{L R}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right], \quad I_{R L}=\operatorname{Tr}\left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{E}^{*} \mathcal{Y}_{E}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right]
$$

New Invariants wrt Quarks

Jacobian Analysis: Mixing

$$
\begin{gathered}
\operatorname{det}\left(J_{\mathcal{U}_{L}}\right)=\left(y_{\nu_{1}}^{2}-y_{\nu_{2}}^{2}\right)\left(y_{\nu_{2}}^{2}-y_{\nu_{3}}^{2}\right)\left(y_{\nu_{3}}^{2}-y_{\nu_{1}}^{2}\right) \\
\left(y_{e}^{2}-y_{\mu}^{2}\right)\left(y_{\mu}^{2}-y_{\tau}^{2}\right)\left(y_{\tau}^{2}-y_{e}^{2}\right)\left|\mathcal{U}_{L}^{e 1}\right|\left|\mathcal{U}_{L}^{e 2}\right|\left|\mathcal{U}_{L}^{\mu 1}\right|\left|\mathcal{U}_{L}^{\mu 2}\right| \\
\text { same as for } \mathrm{V}_{\mathrm{CKM}}
\end{gathered}
$$

$$
O(3) \text { vs } U(3)
$$

$$
\begin{aligned}
\operatorname{det} J_{\mathcal{U}_{R}}= & \left(y_{\nu_{1}}^{2}-y_{\nu_{2}}^{2}\right)^{3}\left(y_{\nu_{2}}^{2}-y_{\nu_{3}}^{2}\right)^{3}\left(y_{\nu_{3}}^{2}-y_{\nu_{1}}^{2}\right)^{3} \\
& \times\left|\left(\mathcal{U}_{R} \mathcal{U}_{R}^{T}\right)_{11}\left\|\left(\mathcal{U}_{R} \mathcal{U}_{R}^{T}\right)_{22}\right\|\left(\mathcal{U}_{R} \mathcal{U}_{R}^{T}\right)_{12}\right|
\end{aligned}
$$

the rank is reduced the most for $\mathcal{U}_{R} \mathcal{U}_{R}^{T}$ being a permutation

Jacobian Analysis: Mixing

...which is now not trivial mixing...

$$
\frac{v^{2}}{M}\left(\begin{array}{ccc}
y_{\nu_{1}}^{2} & 0 & 0 \\
0 & 0 & y_{\nu_{2}} y_{\nu_{3}} \\
0 & y_{\nu_{2}} y_{\nu_{3}} & 0
\end{array}\right)=U_{P M N S}\left(\begin{array}{ccc}
m_{\nu_{1}} & 0 & 0 \\
0 & m_{\nu_{2}} & 0 \\
0 & 0 & m_{\nu_{2}}
\end{array}\right) U_{P M N S}^{T}
$$

...in fact it allows maximal mixing:

Jacobian Analysis: Mixing

...which is now not trivial mixing...

$$
\frac{v^{2}}{M}\left(\begin{array}{ccc}
y_{\nu_{1}}^{2} & 0 & 0 \\
0 & 0 & y_{\nu_{2}} y_{\nu_{3}} \\
0 & y_{\nu_{2}} y_{\nu_{3}} & 0
\end{array}\right)=U_{P M N S}\left(\begin{array}{ccc}
m_{\nu_{1}} & 0 & 0 \\
0 & m_{\nu_{2}} & 0 \\
0 & 0 & m_{\nu_{2}}
\end{array}\right) U_{P M N S}^{T}
$$

...in fact it leads to one maximal mixing angle:

$$
\begin{gathered}
U_{P M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
0 & -\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}
\end{array}\right), \quad m_{v 2}=m_{v 3}=\frac{v^{2}}{M} y_{\nu_{2}} y_{v_{3}}, \quad m_{\nu_{1}}=\frac{v^{2}}{M} y_{\nu_{1}}^{2} . \\
\text { and maximal Majorana phase }
\end{gathered}
$$

Jacobian Analysis: Mixing

...which is now not trivial mixing...

...in fact it leads to one maximal mixing angle:

$$
\begin{array}{l|l}
& \theta_{23}=45^{\circ} ; \\
\text { Majorana } & \text { Phase Pattern }(\mathrm{I}, \mathrm{I}, \mathrm{i})
\end{array}
$$

\& at this level mass degeneracy: $m_{v 2}=m_{v 3}$
if the three neutrinos are quasidegenerate,
$U_{P M N S}\left(\begin{array}{ccc}m_{0} & 0 & 0 \\ 0 & m_{0} & 0 \\ 0 & 0 & m_{0}\end{array}\right) U_{P M N S}^{T}=\frac{y_{\nu} v^{2}}{M}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
This very simple structure is signaled by the extrema of the potential and has eigenvalues (I, I,-I)
and is diagonalized by a maximal $\theta=45^{\circ}$
if the three neutrinos are quasidegenerate,
$U_{P M N S}\left(\begin{array}{ccc}m_{0} & 0 & 0 \\ 0 & m_{0} & 0 \\ 0 & 0 & m_{0}\end{array}\right) U_{P M N S}^{T}=\frac{y_{\nu} v^{2}}{M}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
This very simple structure is signaled by the extrema of the potential and

$$
\text { has eigenvalues }(I, I,-I) \rightarrow \begin{aligned}
& 3 \text { degenerate light neutrinos } \\
& + \text { a maximal Majorana phase }
\end{aligned}
$$

and is diagonalized by a maximal $\theta=45^{\circ}$

Generalization to any seesaw model

> the effective Weinberg Operator

$$
\bar{\ell}_{L} \tilde{H} \frac{\mathrm{C}^{\mathrm{d}=5}}{M} \tilde{H}^{T} \ell_{L}^{c}
$$

shall have a flavour structure that breaks $U(3)\llcorner$ to $O(3)$

$$
\frac{\mathrm{v}^{2} \mathrm{C}^{\mathrm{d}=5}}{M}=\mathrm{m}_{v}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

then the results apply to any seesaw model

First conclusion:

* at the same order in which the minimum of the potential
does NOT allow quark mixing,
it allows:
- hierarchical charged leptons
- quasi-degenerate neutrino masses
- one angle of ~ 45 degrees
- one maximal Majorana phase and the other one trivial

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$
U_{P M N S}\left(\begin{array}{ccc}
m_{0} & 0 & 0 \\
0 & m_{0} & 0 \\
0 & 0 & m_{0}
\end{array}\right) U_{P M N S}^{T}=\frac{y_{\nu} v^{2}}{M}\left(\begin{array}{ccc}
1+\delta+\sigma & \epsilon+\eta & \epsilon-\eta \\
\epsilon+\eta & \delta+\kappa & 1 \\
\epsilon-\eta & 1 & \delta-\kappa
\end{array}\right)
$$

produce a second large angle and a perturbative one together with mass splittings

$$
\theta_{23} \simeq \pi / 4, \theta_{12} \text { large }, \quad \theta_{13} \simeq \epsilon
$$

Fixed Majorana phases: $(1,1, i)$

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$
U_{P M N S}\left(\begin{array}{ccc}
m_{0} & 0 & 0 \\
0 & m_{0} & 0 \\
0 & 0 & m_{0}
\end{array}\right) U_{P M N S}^{T}=\frac{y_{\nu} v^{2}}{M}\left(\begin{array}{ccc}
1+\delta+\sigma & \epsilon+\eta & \epsilon-\eta \\
\epsilon+\eta & \delta+\kappa & 1 \\
\epsilon-\eta & 1 & \delta-\kappa
\end{array}\right)
$$

produce a second large angle and a perturbative one together with mass

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$
U_{P M N S}\left(\begin{array}{ccc}
m_{0} & 0 & 0 \\
0 & m_{0} & 0 \\
0 & 0 & m_{0}
\end{array}\right) U_{P M N S}^{T}=\frac{y_{\nu} v^{2}}{M}\left(\begin{array}{ccc}
1+\delta+\sigma & \epsilon+\eta & \epsilon-\eta \\
\epsilon+\eta & \delta+\kappa & 1 \\
\epsilon-\eta & 1 & \delta-\kappa
\end{array}\right)
$$

produce a second large angle and a perturbative one together with mass splittings
$\theta_{23} \simeq \pi / 4, \theta_{12}$ large,$\theta_{13} \simeq \epsilon$
Fixed Majorana phases: $(1,1, i)$
accommodation of angles requires degenerate spectrum at reach in future neutrinoless double β exps.!

Slide from Laura Baudis talk presenting the new Gerda data at Invisibles I 3 workshop 3 weeks ago

The physics

- Detect the neutrinoless double beta decay in ${ }^{76} \mathrm{Ge}$:
\Rightarrow lepton number violation
\Rightarrow information on the nature of neutrinos and on the effective Majorana neutrino mass

$$
\Gamma^{0 \nu}=\frac{1}{T_{1 / 2}^{0 \nu}}=G^{0 \nu}(Q, Z)\left|M^{0 \nu}\right|^{2} \frac{\left|m_{\beta \beta}\right|^{2}}{m_{e}^{2}}
$$

Alonso, Gavela, Isidori, Maiani ($4 \times 10^{25}-8 \times 10^{26} \mathrm{yr}$)

latest from Planck....

$\sum m_{\nu}=0.22 \pm 0.09 \mathrm{eV}$

Planck Collaboration: Cosi

Where do the differences in Mixing originated?

in the symmetries of the
Quark and Lepton sectors
$\stackrel{\mathcal{G}_{\mathcal{F}}^{q} \sim U(3)^{3}}{\mathcal{G}_{\mathcal{F}}^{l} \sim U(3)^{2} \times O(3)}$
for the type I seesaw employed here;
in general $U\left(n_{g}\right)$ vs $O\left(n_{g}\right)$

Where do the differences in Mixing originate?

From the
MAJORANA vs DIRAC nature of fermions

Conclusions

- Spontaneous Flavour Symmetry Breaking is a predictive dynamical scenario
- Simple solutions arise that resemble nature in first approximation
- The differences in the mixing pattern of Quarks and Leptons arise from their Dirac vs Majorana nature (U vs. O symmetries). $\mathrm{O}(2)$ singled out $->\mathrm{O}(3)$.
- A correlation between large angles and degenerate spectrum emerges. Explicitly, for neutrinos we find: fixed Majorana phases $(\mathrm{I}, \mathrm{I}, \mathrm{i}), \theta_{23}=45^{\circ}, \theta_{12}$ large, θ_{13} small and deg. v's
- This scenario will be tested in the near future by $0 \mathrm{v} 2 \beta$ experiments ($\sim . \mathrm{leV}$).... or cosmology!!!

The prediction:

large mixing angles \Leftrightarrow Majorana degenerate neutrinos
leads to neutrinoless double beta decay and CMB signals that could be observed in a not too distant future !!

Back-up slides

We set the perturbations by hand. Can we predict them also dynamically?

Fundamental Fields

May provide dynamically the perturbations
In the case of quarks they can give the right corrections:

$$
\frac{\mathcal{Y}_{U}}{\Lambda_{f}}+\frac{\chi_{U}^{L} \chi_{U}^{R \dagger}}{\Lambda_{f}^{2}} \sim\left(\begin{array}{ccc}
0 & \sin \theta_{c} y_{c} & 0 \\
0 & \cos \theta_{c} y_{c} & 0 \\
0 & 0 & y_{t}
\end{array}\right)
$$

[Alonso, Gavela, Merlo, Rigolin]
under study in the lepton sector

Use the flavour symmetry of the SM with masless fermions:

$$
\mathrm{G}_{\mathrm{f}}=\mathrm{U}(3)_{\mathrm{Q}_{\mathrm{L}}} \times \mathrm{U}(3)_{\mathrm{U}_{\mathrm{R}}} \times \mathrm{x}(3)_{\mathrm{D}_{\mathrm{R}}}
$$

replace Yukawas by fields:

Spontaneous breaking of flavour symmetry dangerous

Flavour Symmetry Breaking

To prevent Goldstone Bosons the symmetry can be Gauged

[Grinstein, Redi,Villadoro Guadagnoli, Mohapatra, Sung Feldman]

Jacobian Analysis: Masses

Jacobian Analysis: [40 years ago...]

Breaking of $S U(3) \times S U(3) \quad$ [Cabibbo, Maiani]

Lepton Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern:

$$
\mathscr{G}_{\mathcal{F}}^{l} \quad: \quad U(3)^{2} \times O(3) \rightarrow U(2) \times U(1)
$$

brings along hierarchical charged leptons

$$
\begin{aligned}
\mathcal{Y}_{E}=\Lambda_{f} & \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & y_{\tau}
\end{array}\right), \quad \mathcal{Y}_{\nu}=\Lambda_{f}\left(\begin{array}{ccc}
y_{\nu_{1}} & 0 & 0 \\
0 & y_{\nu_{2}} / \sqrt{2} & -i y_{\nu_{2}} / \sqrt{2} \\
0 & y_{\nu_{3}} / \sqrt{2} & i y_{\nu_{3}} / \sqrt{2}
\end{array}\right), \\
& \text { and (at least) two degenerate neutrinos } \\
& \text { and maximal angle and Majorana phase }
\end{aligned}
$$

$$
\begin{gathered}
\underline{\theta_{23}=45^{\circ} ;} \\
\text { Majorana Phase Pattern }(1,1, \mathrm{i}) \\
\text { \& Mass degeneracy: } \mathrm{m}_{\mathrm{v} 2}=\mathrm{m}_{\mathrm{v} 3}
\end{gathered}
$$

Boundaries Exhibit Unbroken Symmetry

Extra-Dimensions Example

The smallest boundaries are extremal points of any function
[Michel, Radicati, 1969]

The non-abelian part of the flavour symmetry of the SM:

$$
\mathrm{G}_{\mathrm{f}}=\mathrm{SU}(3)_{\mathrm{Q}_{\mathrm{L}}} \times \quad \mathrm{SU}(3)_{\mathrm{U}_{\mathrm{R}}} \times \quad \mathrm{SU}(3)_{\mathrm{D}_{\mathrm{R}}}
$$

broken by Yukawas:

Some good ideas:

Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless fermions (Chivukula + Georgi)

$$
\text { quarks: } \quad G_{\text {flavour }}=\mathrm{U}(3)_{\mathrm{QL}} \times \mathrm{U}(3)_{\mathrm{UR}} \times \mathrm{U}(3)_{\mathrm{DR}}
$$

- Assume that Yukawas are the only source of flavour in the SM and beyond

$$
\frac{\mathbf{Y}_{\alpha \beta}{ }^{+} \mathbf{Y}_{\delta \gamma}}{\boldsymbol{\Lambda}_{\text {flavour }}{ }^{2}} \overline{\mathbf{Q}_{\alpha}} \gamma_{\mu} \mathbf{Q}_{\beta} \overline{\mathbf{Q}_{\gamma}} \gamma^{\mu} \mathbf{Q}_{\delta}
$$

... agrees with flavour data being aligned with SM
... allows to bring down $\Lambda_{\text {flavour }}$--> TeV

> D'Ambrosio+Giudice+Isidori+Strumia;
> Cirigliano+Isidori+Grinstein+Wise

Some good ideas:

Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless fermions (Chivukula Georgi)

$$
\text { quarks: } \quad G_{\text {flavour }}=\mathrm{U}(3)_{\mathrm{QL}} \times \mathrm{U}(3)_{\mathrm{UR}} \times \mathrm{U}(3)_{\mathrm{DR}}
$$

- Assume that Yukawas are the only source of flavour in the SM and beyond

$$
\frac{\mathbf{Y}_{\alpha \beta}{ }^{+} \mathbf{Y}_{\delta \gamma}}{\boldsymbol{\Lambda}_{\text {flavour }}{ }^{2}} \overline{\mathbf{Q}_{\alpha}} \gamma_{\mu} \mathbf{Q}_{\beta} \overline{\mathbf{Q}_{\gamma}} \gamma^{\mu} \mathbf{Q}_{\delta}
$$

... agrees with flavour data being aligned with SM
... allows to bring down $\Lambda_{\text {flavour }}$--> TeV
(Chivukula+Georgi 87; Hall+Randall; D’Ambrosio+Giudice+Isidori+Strumia; Cirigliano+Isidori+Grisntein
+Wise; Davidson+Pallorini; Kagan+G. Perez + Volanski+Zupan,...)
Lalak, Pokorski, Ross; Fitzpatrick, Perez, Randall; Grinstein, Redi, Villadoro

Use the flavour symmetry of the SM with masless fermions:

$$
\mathrm{G}_{\mathrm{f}}=\mathrm{U}(3)_{\mathrm{Q}_{\mathrm{L}}} \times \mathrm{U}(3)_{\mathrm{U}_{\mathrm{R}}} \times \mathrm{x}(3)_{\mathrm{D}_{\mathrm{R}}}
$$

which is broken by Yukawas:

Use the flavour symmetry of the SM with masless fermions:

$$
\mathrm{G}_{\mathrm{f}}=\mathrm{U}(3)_{\mathrm{Q}_{\mathrm{L}}} \times \mathrm{U}(3)_{\mathrm{U}_{\mathrm{R}}} \times \mathrm{X}(3)_{\mathrm{D}_{\mathrm{R}}}
$$

replace Yukawas by fields:

Flavour Fields

The Yukawa Operator has to be explicitly flavour invariant at high energies

Bi-fundamental Flavour Fields

$$
\begin{gathered}
\text { Physical parameters } \\
\text { =Independent Invariants } \\
\text { \# d.o.f. in } \mathcal{Y}_{U, D}-\left(\operatorname{dim}\left(\mathcal{G}_{\mathcal{F}}^{q}\right)-1_{U(1)_{B}}\right)=10 \\
2 \times 18
\end{gathered}
$$

These are (proportional to):
3 masses in de up sector,
3 masses in de down sector,
4 mixing parameters in $V_{\text {CKM }}$

$$
\mathcal{Y}_{d \sim(3, \overline{3}, 1)} \quad y_{u \sim(3,1, \overline{3})}
$$

$$
\begin{aligned}
& \left\langle y_{d}\right\rangle \\
& \Lambda_{f}
\end{aligned}=Y_{D}=V_{C K M}\left(\begin{array}{ccc}
y_{d} & 0 & 0 \\
0 & y_{s} & 0 \\
0 & 0 & y_{b}
\end{array}\right), \quad \frac{\left\langle y_{u}\right\rangle}{\Lambda_{f}}=Y_{U}=\left(\begin{array}{ccc}
y_{u} & 0 & 0 \\
0 & y_{c} & 0 \\
0 & 0 & y_{t}
\end{array}\right) .
$$

$$
\sum_{j} \frac{\partial I_{j}}{\partial y_{i}} \frac{\partial V}{\partial I_{j}} \equiv J_{i j} \frac{\partial V}{\partial I_{j}}=0
$$

Jacobian Analysis

$$
J=\left(\begin{array}{ccc}
\partial_{\mathbf{y}_{U}} I_{U^{n}} & 0 & \partial_{\mathbf{y}_{U}} I_{U D} \\
0 & \partial_{\mathbf{y}_{D}} I_{D^{n}} & \partial_{\mathbf{y}_{D}} I_{U D} \\
0 & 0 & \partial_{\partial_{c}} I_{U D}
\end{array}\right) \equiv\left(\begin{array}{ccc}
J_{U} & 0 & \partial_{\mathbf{y}_{\mathbf{y}}} I_{U D} \\
0 & J_{D} & \partial_{\mathbf{y}_{\mathbf{y}}} I_{U D} \\
0 & 0 & J_{U D}
\end{array}\right) .
$$

for the sub-Jacobian which involves only masses we can identify the shape of the I-manifold

Renormalizable Potential

Invariants at the Renormalizable Level

$$
\begin{array}{cc}
\hline I_{U}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right], & I_{D}=\operatorname{Tr}\left[\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right], \\
I_{U^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right)^{2}\right], & I_{D^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \\
I_{U^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right)^{3}\right], & I_{D^{3}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{3}\right], \\
I_{U, D}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right], & I_{U, D^{2}}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], \\
I_{U^{2}, D}=\operatorname{Tr}\left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right], & I_{(U, D)^{2}}=\operatorname{Tr}\left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)^{2}\right] .
\end{array}
$$

Renormalizable Potential

with the definition

$$
X \equiv\left(I_{U}, I_{D}\right)^{T}=\left(\operatorname{Tr}\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right), \operatorname{Tr}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)\right)^{T}
$$

the potential

$$
\begin{aligned}
V^{(4)}= & -\mu^{2} \cdot X+X^{T} \cdot \lambda \cdot X+g \operatorname{Tr}\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right) \\
& +h_{U} \operatorname{Tr}\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right)+h_{D} \operatorname{Tr}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right) \\
& \text { which contains } 8 \text { parameters }
\end{aligned}
$$

Renormalizable Potential

with the definition

$$
X \equiv\left(I_{U}, I_{D}\right)^{T}=\left(\operatorname{Tr}\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right), \operatorname{Tr}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right)\right)^{T}
$$

the potential

$$
\begin{aligned}
V^{(4)}= & -\mu^{2} \cdot X+X^{T} \cdot \lambda \cdot X-g \operatorname{Tr}\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right. \\
& +h_{U} \operatorname{Tr}\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger}\right)+h_{D} \operatorname{Tr}\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right),
\end{aligned}
$$

which contains 8 parameters
e.g. for the case of two families:
$\operatorname{Tr}\left(\mathcal{Y}_{\mathrm{u}} \mathcal{Y}_{\mathrm{u}}{ }^{+} \mathrm{Y}_{\mathrm{d}} \mathcal{Y}_{\mathrm{d}}{ }^{+}\right) \propto\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \cos 2 \theta$
at the minimum: $\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \sin 2 \theta=0$

-> NO MIXING

Berezhiani-Rossi; Anselm, Berezhiani; Alonso, Gavela, Merlo, Rigolin

Renormalizable Potential, mixing three families

Von Neumann Trace Inequality

$$
y_{u}^{2} y_{b}^{2}+y_{s}^{2} y_{c}^{2}+y_{d}^{2} y_{t}^{2} \leq \operatorname{Tr}\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger}\right) \leq y_{u}^{2} y_{d}^{2}+y_{s}^{2} y_{c}^{2}+y_{b}^{2} y_{t}^{2}
$$

So the Potential selects:

coefficient in the potential

$\begin{aligned} & \text { "normal" } \\ & \text { Hierarchy }\end{aligned} \quad V_{C K M}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$;
"inverted" $\quad g>0, \quad V_{C K M}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
No mixing, independently of the mass spectrum
e.g. for the case of two families:
$\operatorname{Tr}\left(\mathcal{Y}_{\mathrm{u}} \mathcal{Y}_{\mathrm{u}}{ }^{+} \mathrm{Y}_{\mathrm{d}} \mathcal{Y}_{\mathrm{d}}{ }^{+}\right) \propto\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \cos 2 \theta$
at the minimum: $\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \sin 2 \theta=0$

-> NO MIXING

Berezhiani-Rossi; Anselm, Berezhiani; Alonso, Gavela, Merlo, Rigolin

2 families, leptons; let us analyze the mixing invariant

Using Casas-Ibarra parametrization $\quad \mathbf{Y}_{\mathbf{v}}=\mathrm{U}_{\text {PMNS }} \underbrace{}_{\mathbf{m}_{\mathbf{v}}{ }^{1 / 2} \mathbf{e} \underbrace{\substack{\text { diagonal } \\ \text { eigenvalues }}} \mathbf{M}^{\mathbf{1}} \mathbf{1}^{1 / 2}}$	
it follows that:	rthog
$\operatorname{Tr}\left(\mathcal{Y}_{\mathrm{E}} \mathcal{Y}_{\mathrm{E}}{ }^{+} \mathcal{Y}_{v} \mathcal{Y}_{v^{+}}\right)=\operatorname{Tr}\left(m_{i}^{1 / 2} U^{+} m_{i}{ }^{2} \cup m_{i}^{1 / 2} R^{+} \mathrm{M}_{\mathrm{N}} R\right)$	it encodes our ignorance of the high energy theory

* In degenerate limit of heavy neutrinos $\mathbf{M}_{\mathbf{N}_{1}}=\mathbf{M}_{\mathbf{N} 2}=\mathbf{M}$

$$
\mathbf{R}=\left(\begin{array}{cc}
\operatorname{ch} \omega & -i \operatorname{sh} \omega \\
i \operatorname{sh} \omega & \operatorname{ch} \omega
\end{array}\right) \quad \text { with } \omega \text { real }
$$

for 2 generations, the mixing terms in $\mathbf{V}\left(y_{\mathrm{E}}, Y_{v}\right)$ is :

Leptons

$\operatorname{Tr}\left(y_{\mathrm{E}} \mathrm{Y}_{\mathrm{E}}{ }^{+} \mathrm{y}_{v} \mathrm{y}_{v^{+}}\right) \propto$
$\left(m_{\mu}^{2}-m_{e}^{2}\right)\left[\cos 2 \omega\left(m_{\nu_{2}}-m_{\nu_{1}}\right) \cos 2 \theta+2 \sin 2 \omega \sqrt{m_{\nu_{2}} m_{\nu_{1}}} \sin 2 \alpha \sin 2 \theta\right]$

$$
\text { where } U_{\text {PMNS }}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{ll}
\mathrm{e}^{-\mathrm{i} \alpha} & 0 \\
0 & \mathrm{e}^{\mathrm{i} \alpha}
\end{array}\right)
$$

Quarks

$$
\operatorname{Tr}\left(y_{u} y_{u}{ }^{+} y_{d} y_{\mathrm{d}}{ }^{+}\right) \propto\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \cos 2 \theta
$$

e.g., for 2 generations, the mixing terms in $\mathbf{V}\left(y_{E}, Y_{v}\right)$ is :

Leptons
$\operatorname{Tr}\left(y_{\mathrm{E}} \mathrm{y}_{\mathrm{E}}{ }^{+} \mathrm{y}_{v} \mathrm{y}_{\mathrm{v}}{ }^{+}\right) \propto$
$\left(m_{\mu}^{2}-m_{e}^{2}\right)\left[\cos 2 \omega\left(m_{\nu_{2}}-m_{\nu_{1}}\right) \cos 2 \theta+2 \sin 2 \omega \sqrt{m_{\nu_{2}} m_{\nu_{1}}} \sin 2 \alpha \sin 2 \theta\right]$
This mixing term unphysical if either "up" or "down" fermions degenerate

Quarks

Mixing physical even with degenerate neutrino masses, if Majorana phase nontrivial

$$
\operatorname{Tr}\left(y_{\mathrm{u}} y_{\mathrm{u}}^{+} y_{\mathrm{d}} y_{\mathrm{d}}^{+}\right) \propto\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right) \cos 2 \theta
$$

e.g., for 2 generations, the mixing terms in $\mathbf{V}\left(y_{E}, y_{v}\right)$ is :

Minimisation (for non trivial $\sin 2 \omega$)
$\operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}} y_{v} y_{v}{ }^{+}\right)$

* $\sin 2 \omega \sqrt{m_{\nu_{2}} m_{\nu_{1}}} \sin 2 \theta \cos 2 \alpha=0 \longrightarrow \quad \boldsymbol{\alpha}=\pi / 4$ or $3 \pi / 4$

Maximal Majorana phase

* $\operatorname{tg} 2 \theta=\sin 2 \alpha \frac{2 \sqrt{m_{\nu_{2}}} m_{\nu_{1}}}{m_{\nu_{2}}-m_{\nu_{1}}} \operatorname{tgh} 2 \omega$

Large angles correlated with degenerate masses

Example: 2 families; consider the renormalizable set of invariants:
The flavour symmetry is $\mathbf{G}_{\mathbf{f}}=U(2)_{L} \times U(2)_{E_{R}} \times O(2)_{N_{R}}$ which adds a new invariant for the lepton sector. In total:

$$
\begin{array}{ll}
\operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}}^{+}\right) & \operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}}^{+}\right)^{2} \\
\operatorname{Tr}\left(y_{v} y_{v}^{+}\right) & \operatorname{Tr}\left(y_{v} y_{v}^{+}\right)^{2}
\end{array}
$$

$$
\operatorname{Tr}\left(\mathcal{Y}_{\mathrm{E}} \mathcal{Y}_{\mathrm{E}}^{+} \mathcal{Y}_{v} \mathcal{Y}_{v}^{+}\right) \longleftarrow \text { mixing }
$$

Example: 2 families; consider the renormalizable set of invariants:
The flavour symmetry is $\mathbf{G}_{\mathbf{f}}=U(2)_{L} \times U(2)_{E_{R}} \times O(2)_{N_{R}}$ which adds a new invariant for the lepton sector. In total:

$$
\begin{array}{ll}
\operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}}^{+}\right) & \operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}}\right)^{2} \\
\operatorname{Tr}\left(y_{v} y_{v}^{+}\right) & \operatorname{Tr}\left(y_{v} y_{v}^{+}\right)^{2} \\
\operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}} y_{v} y_{v}^{+}\right) \longleftarrow{ }_{\mathrm{v}}{ }^{\text {mixing }} \\
\left.\operatorname{Tr}\left(y_{v}^{+} y_{v}\left(y_{v}^{+} y_{v}\right)^{\mathrm{T}}\right)<--\mathbf{O}^{(2}\right)_{\mathrm{N}}
\end{array}
$$

e.g., for 2 generations, the mixing terms in $\mathbf{V}\left(\mathcal{Y}_{\mathrm{E}}, \mathcal{Y}_{v}\right)$ is : Minimisation of $\operatorname{Tr}\left(\mathcal{Y}_{\mathrm{E}} \mathcal{Y}_{\mathrm{E}}{ }^{+} \mathcal{Y}_{v} \mathcal{Y}_{v}{ }^{+}\right)$

Jacobian

$$
J=\left(\begin{array}{ccccc}
\partial_{\mathbf{y}_{E}} I_{E^{n}} & 0 & 0 & \partial_{\mathbf{y}_{E}} I_{L^{n}} & \partial_{\mathbf{y}_{E}} I_{L R} \\
0 & \partial_{\mathbf{y}_{\nu}} I_{\nu^{n}} & \partial_{\mathbf{y}_{\nu}} I_{R^{n}} & \partial_{\mathbf{y}_{\nu}} I_{L^{n}} & \partial_{\mathbf{y}_{\nu}} I_{L R} \\
0 & 0 & \partial_{\mathcal{u}_{R}} I_{R^{n}} & 0 & \partial_{\mathcal{U}_{R}} I_{L R} \\
0 & 0 & 0 & \partial_{\mathcal{u}_{L}} I_{L^{n}} & \partial_{\mathcal{u}_{L}} I_{L R} \\
0 & 0 & 0 & 0 & \partial_{\mathcal{U}_{L} \mathcal{U}_{R}} I_{L R}
\end{array}\right),
$$

$$
\operatorname{Diag}(J) \equiv\left(J_{E}, J_{\nu}, J_{\mathcal{U}_{R}}, J_{\mathcal{U}_{L}}, J_{L R}\right)
$$

Jacobian Analysis: Mixing

What is the symmetry in this boundary?

$$
Y_{\nu}=\left(\begin{array}{ccc}
y_{1} & 0 & 0 \\
0 & \frac{y_{2}}{\sqrt{2}} & -i \frac{y_{2}}{\sqrt{2}} \\
0 & \frac{y_{3}}{\sqrt{2}} & i \frac{y_{3}}{\sqrt{2}}
\end{array}\right) \quad \lambda_{3}^{\prime} Y_{\nu}-Y_{\nu} \lambda_{7}=0 ; \lambda_{3}^{\prime}=\operatorname{diag}(0,1,-1)
$$

$$
U(1)_{\operatorname{diag}}
$$

which is extended if the eigenvalues are degenerate

$$
Y_{\nu} \rightarrow y\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -i \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & i \frac{1}{\sqrt{2}}
\end{array}\right)=y V, \quad Y_{\nu} \rightarrow\left(V \mathcal{O} V^{\dagger}\right) Y_{\nu} \mathcal{O}^{T}=Y_{\nu} .
$$

Renormalizable Potential

Renormalizable Potential, masses

$$
\begin{aligned}
& \mathcal{Y}_{D}=\Lambda_{f}\left(\begin{array}{lll}
y & 0 & 0 \\
0 & y_{0} & 0 \\
0 & 0 & y_{b}
\end{array}\right), \quad \mathcal{y}_{U}=\Lambda_{f}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & y_{t}
\end{array}\right), \\
& \text { II }
\end{aligned}
$$

Renormalizable Potential, Stability

Renormalizable Potential

defining

$$
\mathbf{x} \equiv\left(\operatorname{Tr}\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right), \operatorname{Tr}\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{\nu}_{\nu}\right)\right)^{T}
$$

the potential reads:

$$
\begin{gathered}
V=-\mu^{2} \cdot \mathbf{X}+\mathbf{X}^{T} \cdot \lambda \cdot \mathbf{X}-h_{E} \operatorname{Tr}\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \perp+g \operatorname{Tr}\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)\right. \\
+h_{\nu} \operatorname{Tr}\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{\dagger}\right)+h_{\nu}^{\prime} \operatorname{Tr}\left(\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{+} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger}\right) . \\
\\
9 \text { parameters }
\end{gathered}
$$

Renormalizable Potential: Masses

Renormalizable Potential

$$
\begin{gathered}
\text { defining } \\
\mathbf{x} \equiv\left(\operatorname{Tr}\left(\mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger}\right), \operatorname{Tr}\left(\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu}\right)\right)^{T}, \\
\text { the potential reads: }
\end{gathered}
$$

9 parameters

Renormalizable Potential: Mixing

One maximal angle again but not quite in the

$$
h_{\nu}^{\prime}>0, \quad U_{P M N S}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0 \\
0 & 0 & 1 \\
-\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} & 0
\end{array}\right)
$$

right place

The solution with a maximal θ_{23}, may arise in a Non-Renormalizable Potential or could be a Local Minima of the Renormalizable Potential

* What is the role of the neutrino flavour group?

Leptons: $\mathrm{G}_{\text {flavour }}=\mathbf{U}(2)_{\mathrm{L}} \times \mathrm{U}(2)$ ER \times ?

Inmediate results using for both quark and leptons

$$
\mathrm{Y}=\mathrm{U}_{\mathrm{L}} \mathrm{y}^{\text {diag }} \mathrm{U}_{\mathrm{R}}
$$

* What is the role of the neutrino flavour group?

To analyze this in general, use common parametrization for quarks and leptons:

$$
Y=U_{L} \quad y^{\text {diag. }} U_{R}
$$

* Quarks, for instance: $\quad U_{R}$ unphysical, $\quad U_{L}-->U_{C K M}$

$$
\mathbf{Y}_{\mathbf{D}}=\mathbf{U}_{\text {CKM }} \operatorname{diag}\left(\mathrm{y}_{\mathrm{d}}, \mathrm{y}_{\mathrm{s}}, \mathrm{y}_{\mathrm{b}}\right) \quad ; \quad \mathbf{Y}_{\mathbf{U}}=\operatorname{diag}\left(\mathrm{y}_{\mathrm{u}}, \mathrm{y}_{\mathrm{c}}, \mathrm{y}_{\mathrm{t}}\right)
$$

* Leptons:

$$
Y_{E}=\operatorname{diag}\left(y_{e}, y_{\mu}, y_{\tau}\right) \quad ; \quad Y_{v}=U_{L} \quad y^{\text {diag. }} U_{R}
$$

UPMNS diagonalize $\quad m_{v} \sim Y_{v} \frac{v^{2}}{M} Y_{v}{ }^{T}=U_{L} y_{v}{ }^{\text {diag. }} \frac{U_{R} v^{2}}{M} U_{R}{ }^{T} y_{v}{ }^{\text {diag. }} U_{L}{ }^{T}$

* What is the role of the neutrino flavour group?

U(n)

* What is the role of the neutrino flavour group?

$\mathbf{U}(\mathbf{n})$

ie. $\mathbf{U}(3)_{\mathrm{L}} \times \mathbf{U}(3)_{\mathrm{En}} \times \mathbf{U}(2)_{\mathrm{Ne}}$ or: $\quad \mathbf{U}(3)_{\mathrm{L}} \times \mathrm{X}(3)_{\mathrm{Er}} \times \mathrm{U}(3)_{\mathrm{N} k}$

* What is the role of the neutrino flavour group?

$$
\text { e.g. } \mathbf{U}(\mathbf{n})_{\mathrm{NR}} \quad \text {... leptons }
$$

e.g. generic seesaw

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{S M}+i \overline{N_{R}} \not \partial N_{R}-\left[\overline{N_{R}} Y_{N} \tilde{\phi}^{\dagger} \ell_{L}+\frac{1}{2} \overline{N_{R}} \mathbf{M} N_{R}^{c}+\text { h.c. }\right] \\
& \text { with M carrying flavour } \longrightarrow \mathbf{M} \text { spurion }
\end{aligned}
$$

More invariants in this case:

$$
\begin{array}{ccc}
\operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}}\right) & \operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}}\right)^{2} & \operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}} y_{v} y_{v}^{+}\right) \\
\operatorname{Tr}\left(y_{v} y_{v}^{+}\right) & \operatorname{Tr}\left(y_{v} y_{v}^{+}\right)^{2} & \\
\operatorname{Tr}\left(M_{N} M_{N^{+}}\right) & \operatorname{Tr}\left(M_{N} M_{N^{+}}\right)^{2} & \operatorname{Tr}\left(M_{N} M_{N^{+}} y_{v}^{+} y_{v}\right)
\end{array}
$$

Result: no mixing for flavour groups $\mathrm{U}(\mathrm{n})$

SU(n)

* What is the role of the neutrino flavour group?

$$
\text { e.g. } \mathrm{SU}(\mathbf{n})_{\mathrm{NR}} \quad \text {... leptons }
$$

e.g. generic seesaw

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{S M}+i \overline{N_{R}} \not N_{R}-\left[\overline{N_{R}} Y_{N} \bar{\phi}^{\dagger} \ell_{L}+\frac{1}{2} \overline{N_{R}} \mathbf{M} N_{R}^{c}+\text { h.c. }\right] \\
& \text { with } \mathbf{M} \text { carrying flavour } \longrightarrow \mathbf{M} \text { spurion }
\end{aligned}
$$

More invariants in this case:

$$
\begin{array}{ccc}
\operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}}\right) & \operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}}\right)^{2} & \operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}^{+}} y_{v} y_{v}^{+}\right) \\
\operatorname{Tr}\left(y_{v} y_{v}^{+}\right) & \operatorname{Tr}\left(y_{v} y_{v}^{+}\right)^{2} & \\
\operatorname{Tr}\left(M_{N} M_{N^{+}}\right) & \operatorname{Tr}\left(M_{N} M_{N^{+}}\right)^{2} & \operatorname{Tr}\left(M_{N} M_{N^{+}} y_{v}^{+} y_{v}\right)
\end{array}
$$

At the minimum:
${ }^{*} \operatorname{Tr}\left(y_{v} y_{v}{ }^{+} \mathrm{Y}_{\mathrm{E}} \mathrm{Y}_{\mathrm{E}}{ }^{+}\right)=\operatorname{Tr}\left(\mathrm{U}_{\mathrm{L}} \mathrm{y}_{\mathrm{v}}{ }^{\text {diag. } 2} \mathrm{U}_{\mathrm{L}}{ }^{+} \mathrm{y}_{1}\right.$ diag. $\left.{ }^{2}\right) \longrightarrow \mathrm{U}_{\mathrm{L}}=1$

* $\operatorname{Tr}\left(M_{N} M_{N^{+}} y_{v} y_{v}{ }^{+}\right)=\operatorname{Tr}\left(U_{\mathrm{R}} \mathrm{y}_{\mathrm{v}}{ }^{\text {diag. } 2} \mathrm{U}_{\mathrm{R}}{ }^{+} \mathrm{M}_{\mathrm{i}}{ }^{\text {diag. } 2}\right) \longrightarrow \mathrm{U}_{\mathrm{R}}=1$
same conclusion for $\mathbf{3}$ families of quarks:

$$
Y=U_{L} \quad y^{\text {diag. }} \mathrm{U}_{\mathrm{R}}
$$

* Quarks, for instance: $\quad U_{R}$ unphysical, $U_{L}-->U_{C K M}$

$$
\mathbf{Y}_{\mathrm{D}}=\mathbf{U}_{\text {CKM }} \operatorname{diag}\left(\mathrm{y}_{\mathrm{d}}, \mathrm{y}_{\mathrm{s}}, \mathrm{y}_{\mathrm{b}}\right) \quad ; \quad \mathbf{Y}_{\mathrm{U}}=\operatorname{diag}\left(\mathrm{y}_{\mathrm{u}}, \mathrm{y}_{\mathrm{c}}, \mathrm{y}_{\mathrm{t}}\right)
$$

$\operatorname{Tr}\left(y_{u} y_{u}{ }^{+} y_{d} y_{d}{ }^{+}\right)=\operatorname{Tr}\left(U_{L} y_{u}{ }^{\text {diag. } 2} U_{L}{ }^{+} y_{d}{ }^{\text {diag. } 2}\right)$
$\longrightarrow \mathrm{U}_{\mathrm{L}}=\mathrm{U}_{\mathrm{CKM}} \sim 1$ at the minimum

NO MIXING

O(n)

Can its minimum correspond naturally to the observed masses and mixings?

i.e. with all dimensionless λ 's ~ 1
and dimensionful $\mu^{\prime} \mathrm{s} \leqq \Lambda_{\mathrm{f}}$

Spectrum for flavons Σ in the bifundamental:

* 3 generations: for the largest fraction of the parameter space, the stable solution is a degenerate spectrum

$$
\left(\begin{array}{lll}
\mathrm{y}_{\mathrm{u}} & & \\
& \mathrm{yc}_{\mathrm{c}} & \\
& & \mathrm{yt}_{\mathrm{t}}
\end{array}\right) \sim\left(\begin{array}{lll}
\mathrm{y} & & \\
& \mathrm{y} & \\
& & \mathrm{y}
\end{array}\right)
$$

instead of the observed hierarchical spectrum, i.e.

$$
\left(\begin{array}{lll}
\mathrm{yu}_{\mathrm{u}} & & \\
& \mathrm{yc}_{\mathrm{c}} & \\
& & \mathrm{yt}_{\mathrm{t}}
\end{array}\right) \sim\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & \mathrm{y}
\end{array}\right)
$$

(at leading order)

Spectrum: the hierarchical solution is unstable in most of the

$$
\begin{aligned}
& \text { parameter space. } \quad \text { Stability: } \frac{\tilde{\mu}^{2}}{\mu^{2}}<\frac{2 \lambda^{\prime 2}}{\lambda} \\
& \qquad V^{(4)}=\sum_{i=u, d}\left(-\mu_{i}^{2} A_{i}+\tilde{\mu}_{i} B_{i}+\lambda_{i} A_{i}^{2}+\lambda_{i}^{\prime} A_{i i}\right)+g_{u d} A_{u} A_{d}+\lambda_{u d} A_{u d} . \\
& \text { ie, the u-part: } \quad V^{(4)}=-\mu_{u}^{2} A_{u}+\tilde{\mu}_{u} B_{u}+\lambda_{u} A_{u}^{2}+\lambda_{u}^{\prime} A_{u u}
\end{aligned} .
$$

Spectrum: the hierarchical solution is unstable in most of the parameter space.

$$
\begin{aligned}
& \text { Stability: } \frac{\tilde{\mu}^{2}}{\mu^{2}}<\frac{2 \lambda^{\prime 2}}{\lambda} \\
& \left.A_{i}+\tilde{\mu}_{i} B_{i}+\lambda_{i} A_{i}^{2}+\lambda_{i}^{\prime} A_{i i}\right)+g_{u d} A_{u} A_{d}+\lambda_{u d} A_{u d} .
\end{aligned}
$$

ie, the u-part:

$$
V^{(4)}=-\mu_{u}^{2} A_{u}+\tilde{\mu}_{u} B_{u}+\lambda_{u} A_{u}^{2}+\lambda_{u}^{\prime} A_{u u}
$$

Nardi emphasized this solution (and extended the analysis to include also $U(1)$ factors)

Normal hierarchy:

Up to terms of $\mathcal{O}\left(\sqrt{r}, s_{13}\right)$, we find

$$
r=\frac{\left|\Delta m_{12}^{2}\right|}{\left|\Delta m_{13}^{2}\right|}
$$

$$
Y_{N}^{T} \simeq y\left(\begin{array}{c}
e^{i \delta} s_{13}+e^{-i \alpha} s_{12} r^{1 / 4} \\
s_{23}\left(1-\frac{\sqrt{r}}{2}\right)+e^{-i \alpha} r^{1 / 4} c_{12} c_{23} \\
c_{23}\left(1-\frac{\sqrt{r}}{2}\right)-e^{-i \alpha} r^{1 / 4} c_{12} s_{23}
\end{array}\right)
$$

Inverted hierarchy:

$$
Y_{N}^{T} \simeq \frac{y}{\sqrt{2}}\left(\begin{array}{c}
c_{12} e^{i \alpha}+s_{12} e^{-i \alpha} \\
c_{12}\left(c_{23} e^{-i \alpha}-s_{23} s_{13} e^{i(\alpha-\delta)}\right)-s_{12}\left(c_{23} e^{i \alpha}+s_{23} s_{13} e^{-i(\alpha+\delta)}\right) \\
-c_{12}\left(s_{23} e^{-i \alpha}+c_{23} s_{13} e^{i(\alpha-\delta)}\right)+s_{12}\left(s_{23} e^{i \alpha}-c_{23} s_{13} e^{-i(\alpha+\delta)}\right)
\end{array}\right)
$$

The invariants can be written in terms of masses and mixing

* two families:

$$
\begin{gathered}
<\Sigma_{\mathrm{d}}>=\Lambda_{\mathrm{f}} . \operatorname{diag}\left(\mathrm{y}_{\mathrm{d}}\right) ; \quad<\Sigma_{\mathrm{u}}>=\Lambda_{\mathrm{f}} . V_{\text {Cabibbo }} \operatorname{diag}\left(\mathrm{y}_{\mathrm{u}}\right) \\
Y_{D}=\left(\begin{array}{cc}
y_{d} & 0 \\
0 & y_{s}
\end{array}\right), \quad Y_{U}=\nu_{C}^{\dagger}\left(\begin{array}{cc}
y_{u} & 0 \\
0 & y_{c}
\end{array}\right) \quad V_{\text {Cabibbo }}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
\end{gathered}
$$

$$
<\operatorname{Tr}\left(\Sigma_{\mathrm{u}} \Sigma_{\mathrm{u}}^{+}\right)>=\Lambda_{\mathrm{f}}^{2}\left(\mathrm{yu}^{2}+\mathrm{y}_{\mathrm{c}}^{2}\right) ;<\operatorname{det}\left(\Sigma_{\mathrm{u}}\right)>=\Lambda_{\mathrm{f}}^{2} \mathrm{y}_{\mathrm{u}} \mathrm{y}_{\mathrm{c}}
$$

$$
<\operatorname{Tr}\left(\Sigma_{\mathrm{u}} \Sigma_{\mathrm{u}}^{+} \Sigma_{\mathrm{d}} \Sigma_{\mathrm{d}}^{+}\right)>=\Lambda_{\mathrm{f}}^{4}\left[\left(\mathrm{yc}^{2}-\mathrm{yu}^{2}\right)\left(\mathrm{ys}^{2}-\mathrm{y}_{\mathrm{d}}^{2}\right) \cos 2 \theta+\ldots\right] / 2
$$

Minimum of the Potential

Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$
\frac{\partial V}{\partial y_{i}}=0 \quad \frac{\partial V}{\partial \theta_{i}}=0
$$

Take the angle for example:

$$
\frac{\partial V}{\partial \theta_{c}} \propto\left(y_{c}^{2}-y_{u}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right) \sin 2 \theta_{c}=0
$$

Non-degenerate masses $\longrightarrow \sin 2 \theta_{c}=0 \quad$ No mixing!

Notice also that $\frac{\partial V^{(4)}}{\partial \theta} \sim \sqrt{J} \quad$ (Jarlskog determinant)

Minimum of the Potential

Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$
\frac{\partial V}{\partial y_{i}}=0 \quad \frac{\partial V}{\partial \theta_{i}}=0
$$

Take the angle for example:

$$
\frac{\partial V}{\partial \theta_{c}} \propto\left(y_{c}^{2}-y_{u}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right) \sin 2 \theta_{c}=0
$$

Non-degenerate masses $\longrightarrow \sin 2 \theta_{c}=0$ No mixing!
Can the actual masses and mixings fit naturally in the minimum of the Potential? e.g. adding non-renormalizable terms...

Minimum of the Potential

Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$
\frac{\partial V}{\partial y_{i}}=0 \quad \frac{\partial V}{\partial \theta_{i}}=0
$$

Take the angle for example:

$$
\frac{\partial V}{\partial \theta_{c}} \propto\left(y_{c}^{2}-y_{u}^{2}\right)\left(y_{s}^{2}-y_{d}^{2}\right) \sin 2 \theta_{c}=0
$$

$$
\text { Non-degenerate masses } \quad \sin 2 \theta_{c}=0 \quad \text { No mixing ! }
$$

Can the actual masses and mixings fit naturally in the minimum of the Potential? e.g. adding non-renormalizable terms...

* Without fine-tuning, for two families the spectrum is degenerate
* To accomodate realistic mixing one must introduce wild fine tunnings of $\mathrm{O}\left(10^{-10}\right)$ and nonrenormalizable terms of dimension 8
* at renormalizable level: 7 invariants instead of the 5 for two families

$$
\begin{array}{ll}
\operatorname{Tr}\left(\Sigma_{u} \Sigma_{u}^{\dagger}\right) \stackrel{\text { vev }}{=} \Lambda_{f}^{2}\left(y_{t}^{2}+y_{c}^{2}+y_{u}^{2}\right), & \operatorname{Det}\left(\Sigma_{u}\right) \stackrel{\text { vev }}{=} \Lambda_{f}^{3} y_{u} y_{c} y_{t}, \\
\operatorname{Tr}\left(\Sigma_{d} \Sigma_{d}^{\dagger}\right) \stackrel{\text { vev }}{=} \Lambda_{f}^{2}\left(y_{b}^{2}+y_{s}^{2}+y_{d}^{2}\right), & \operatorname{Det}\left(\Sigma_{d}\right) \stackrel{\text { vev }}{=} \Lambda_{f}^{3} y_{d} y_{s} y_{b}, \\
=\operatorname{Tr}\left(\Sigma_{u} \Sigma_{u}^{\dagger} \Sigma_{u} \Sigma_{u}^{\dagger}\right) \stackrel{\text { vev }}{=} \Lambda_{f}^{4}\left(y_{t}^{4}+y_{c}^{4}+y_{u}^{4}\right), & \\
=\operatorname{Tr}\left(\Sigma_{d} \Sigma_{d}^{\dagger} \Sigma_{d} \Sigma_{d}^{\dagger}\right) \stackrel{\text { vev }}{=} \Lambda_{f}^{4}\left(y_{b}^{4}+y_{s}^{4}+y_{d}^{4}\right), & \\
=\operatorname{Tr}\left(\Sigma_{u} \Sigma_{u}^{\dagger} \Sigma_{d} \Sigma_{d}^{\dagger}\right) \stackrel{\text { vev }}{=} \Lambda_{f}^{4}\left(P_{0}+P_{\text {int }}\right), &
\end{array}
$$

Interesting angular dependence: $P_{0} \equiv-\sum_{i<j}\left(y_{u_{i}}^{2}-y_{u_{j}}^{2}\right)\left(y_{d_{i}}^{2}-y_{d_{j}}^{2}\right) \sin ^{2} \theta_{i j}$,

$$
\begin{aligned}
P_{i n t} \equiv & \sum_{i<j, k}\left(y_{d_{i}}^{2}-y_{d_{k}}^{2}\right)\left(y_{u_{j}}^{2}-y_{u_{k}}^{2}\right) \sin ^{2} \theta_{i k} \sin ^{2} \theta_{j k}+ \\
& -\left(y_{d}^{2}-y_{s}^{2}\right)\left(y_{c}^{2}-y_{t}^{2}\right) \sin ^{2} \theta_{12} \sin ^{2} \theta_{13} \sin ^{2} \theta_{23}+ \\
& +\frac{1}{2}\left(y_{d}^{2}-y_{s}^{2}\right)\left(y_{c}^{2}-y_{t}^{2}\right) \cos \delta \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \theta_{13},
\end{aligned}
$$

The real, unavoidable, problem is again mixing:

* Just one source:

$$
\operatorname{Tr}\left(\Sigma_{\mathrm{u}} \Sigma_{\mathrm{u}}{ }^{+} \Sigma_{\mathrm{d}} \Sigma_{\mathrm{d}}{ }^{+}\right)=\Lambda_{\mathrm{f}}^{4}\left(\mathrm{P}_{0}+\mathrm{P}_{\mathrm{int}}\right)
$$

P_{0} and $P_{\text {int }}$ encode the angular dependence,

$$
\begin{aligned}
P_{0} \equiv & -\sum_{i<j}\left(y_{u_{i}}^{2}-y_{u_{j}}^{2}\right)\left(y_{d_{i}}^{2}-y_{d_{j}}^{2}\right) \sin ^{2} \theta_{i j}, \\
P_{\text {int }} \equiv & \sum_{i<j, k}\left(y_{d_{i}}^{2}-y_{d_{k}}^{2}\right)\left(y_{u_{j}}^{2}-y_{u_{k}}^{2}\right) \sin ^{2} \theta_{i k} \sin ^{2} \theta_{j k}+ \\
& -\left(y_{d}^{2}-y_{s}^{2}\right)\left(y_{c}^{2}-y_{t}^{2}\right) \sin ^{2} \theta_{12} \sin ^{2} \theta_{13} \sin ^{2} \theta_{23}+ \\
& +\frac{1}{2}\left(y_{d}^{2}-y_{s}^{2}\right)\left(y_{c}^{2}-y_{t}^{2}\right) \cos \delta \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \theta_{13},
\end{aligned}
$$

Sad conclusions as for 2 families:
needs non-renormalizable + super fine-tuning

*a good possibility for the other angles :

Yukawas --> add fields in the fundamental of the flavour group

1) Y -- > one single scalar $\quad Y \sim(3,1,3)$

2) $\mathrm{Y}-\mathrm{-}$ > two scalars $\chi \chi^{+} \sim(3,1,3)$

3) Y -- > two fermions $\bar{\Psi} \Psi \sim(3,1,3)$

4) Y -- > one single scalar $\quad Y \sim(3,1,3)$

5) $\mathrm{Y}-\mathrm{-}$ > two scalars $\chi \chi^{+} \sim(3,1,3)$

$$
\chi \sim(3,1,1)
$$

3) Y -- > two fermions $\bar{\Psi} \Psi \sim(3,1,3)$

1) Y -- > one single scalar $\quad \mathrm{V} \sim(3,1,3)$ $\mathrm{d}=5$ operator

2) Y -- > two scalars $\chi \chi^{+} \sim(3,1,3)$ $\mathrm{d}=6$ operator $\quad \chi \sim(3,1,1)$

3) Y -- > two fermions $\bar{\Psi} \Psi \sim(3,1,3)$ $\mathrm{d}=7$ operator

Y --> quadratic in fields χ

$$
\mathbf{Y} \sim \frac{\left\langle\chi \chi^{\dagger}\right\rangle}{\Lambda_{f}^{2}}
$$

\longrightarrow Automatic strong mass hierarchy and one mixing angle already at the renormalizable level

Holds for $\mathbf{2}$ and $\mathbf{3}$ families !

2) Y--> quadratic in fields χ
 $$
\mathbf{Y} \sim \frac{\left\langle\chi \chi^{\dagger}\right\rangle}{\Lambda_{f}^{2}}
$$

$$
\text { i.e. } \mathrm{Y}_{\mathrm{D}} \sim \frac{\chi^{\mathrm{L}} \mathrm{~d}\left(\chi^{\mathrm{R}} \mathrm{~d}\right)^{+} \sim(3,1,1)(1,1, \overline{3}) \sim(3,1, \overline{3})}{\Lambda_{\mathrm{f}}{ }^{2}}
$$

Y \rightarrow quadratic in fields χ

It is very simple:

- a square matrix built out of 2 vectors

$$
\left(\begin{array}{c}
\mathrm{d} \\
\mathrm{e} \\
\mathrm{f} \\
\vdots
\end{array}\right)(\mathrm{a}, \mathrm{~b}, \mathrm{c} \ldots \ldots . .)
$$

has only one non-vanishing eigenvalue
strong mass hierarchy at leading order:
-- only 1 heavy "up" quark
-- only 1 heavy "down" quark

only $|\chi|$'s relevant for scale

Minimum of the Potential

Dimension 6 Yukawa Operator

The invariants are:

$$
\begin{array}{cc}
\chi_{u}^{L \dagger} \chi_{u}^{L}, & \chi_{u}^{R \dagger} \chi_{u}^{R}, \quad \chi_{d}^{L \dagger} \chi_{d}^{L}, \\
\chi_{d}^{R \dagger} \chi_{d}^{R}, & \chi_{u}^{L \dagger} \chi_{d}^{L}=\left|\chi_{u}^{L}\right|\left|\chi_{d}^{L}\right| \cos \theta_{c} .
\end{array}
$$

$\boldsymbol{\theta}_{\mathrm{c}}$ is the angle between up and down L vectors

Minimum of the Potential

Dimension 6 Yukawa Operator

The invariants are:

$$
\begin{array}{cc}
\chi_{u}^{L \dagger} \chi_{u}^{L}, & \chi_{u}^{R \dagger} \chi_{u}^{R}, \quad \chi_{d}^{L \dagger} \chi_{d}^{L} \\
\chi_{d}^{R \dagger} \chi_{d}^{R}, & \chi_{u}^{L \dagger} \chi_{d}^{L}=\left|\chi_{u}^{L}\right|\left|\chi_{d}^{L}\right| \cos \theta_{c}
\end{array}
$$

We can fit the angle and the masses in the Potential; as an example:

$$
\begin{gathered}
V^{\prime}=\lambda_{u}\left(\chi_{u}^{L \dagger} \chi_{u}^{L}-\frac{\mu_{u}^{2}}{2 \lambda_{u}}\right)^{2}+\lambda_{d}\left(\chi_{d}^{L \dagger} \chi_{d}^{L}-\frac{\mu_{d}^{2}}{2 \lambda_{d}}\right)^{2} \\
+\lambda_{u d}\left(\chi_{u}^{L \dagger} \chi_{d}^{L}-\frac{\mu_{u d}^{2}}{2 \lambda_{u d}}\right)^{2}+\cdots
\end{gathered}
$$

Whose minimum sets (2 generations):

$$
y_{c}^{2}=\frac{\mu_{u}^{2}}{2 \lambda_{u} \Lambda_{\mathrm{f}}^{2}} \quad y_{s}^{2}=\frac{\mu_{d}^{2}}{2 \lambda_{d} \Lambda_{\mathrm{f}}^{2}} \quad \cos \theta=\frac{\mu_{u d}^{2} \sqrt{\lambda_{u} \lambda_{d}}}{\mu_{u} \mu_{d} \lambda_{u d}}
$$

Towards a realistic 3 family spectrum
e.g. replicas of $\chi^{L}, \chi_{u}^{R}, \chi_{d}^{R}$
???

Suggests sequential breaking:

$$
\begin{gathered}
\mathbf{S U (3)}{ }^{\mathbf{3}} \underset{\mathrm{mt}, \mathrm{mb}}{\mathbf{S U}(2)^{\mathbf{3}}} \xrightarrow[\mathbf{m c}, \mathbf{m s}, \boldsymbol{\theta} \mathbf{C}]{\cdots} \cdots \cdots \\
Y_{u} \equiv \frac{\left\langle\chi^{L}\right\rangle\left\langle\chi_{u}^{R \dagger}\right\rangle}{\Lambda_{f}^{2}}+\frac{\left\langle\chi_{u}^{\prime L}\right\rangle\left\langle\chi_{u}^{\prime R \dagger}\right\rangle}{\Lambda_{f}^{2}}=\left(\begin{array}{ccc}
0 & \sin \theta y_{c} & 0 \\
0 & \cos \theta y_{c} & 0 \\
0 & 0 & y_{t}
\end{array}\right) \\
Y_{d} \equiv \frac{\left\langle\chi^{L}\right\rangle\left\langle\chi_{d}^{R \dagger}\right\rangle}{\Lambda_{f}^{2}}+\frac{\left\langle\chi_{d}^{\prime L}\right\rangle\left\langle\chi_{d}^{\prime R \dagger}\right\rangle}{\Lambda_{f}^{2}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y_{s} & 0 \\
0 & 0 & y_{b}
\end{array}\right)
\end{gathered}
$$

* From bifundamentals: $\left\langle y_{\mathrm{u}}\right\rangle=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{t}\end{array}\right)$

$$
\left\langle\mathcal{Y}_{\mathrm{d}}\right\rangle=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & y_{b}
\end{array}\right)
$$

* From fundamentals χ : y_{c}, y_{s} and θ_{C}

Towards a realistic 3 family spectrum

e.g. replicas of $\chi^{L}, \chi_{u}^{R}, \chi_{d}^{R}$
???

Suggests sequential breaking:

$$
\begin{aligned}
& \mathrm{SU}(\mathbf{3})^{\mathbf{3}} \xrightarrow[\mathrm{mt}, \mathrm{mb}]{ } \mathrm{SU}(\mathbf{2})^{\mathbf{3}} \xrightarrow[\mathrm{mc}, \mathrm{~ms}, \theta_{\mathrm{C}}]{ }{ }^{\ldots}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{d} \equiv \frac{\left\langle\chi^{L}\right\rangle\left\langle\chi_{d}^{R \dagger}\right\rangle}{\Lambda_{f}^{2}}+\frac{\left\langle\chi_{d}^{\prime L}\right\rangle\left\langle\chi_{d}^{\prime R \dagger}\right\rangle}{\Lambda_{f}^{2}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y_{s} & 0 \\
0 & 0 & y_{b}
\end{array}\right) .
\end{aligned}
$$

i.e. for quarks, a possible path:

* At leading (renormalizable) order:

$$
\begin{aligned}
& Y_{u} \equiv \frac{\left\langle y_{u}\right\rangle}{\Lambda_{f}}+\frac{\left\langle\chi_{u}^{L}\right\rangle\left\langle\chi_{u}^{R \dagger}\right\rangle}{\Lambda_{f}^{2}}=\left(\begin{array}{ccc}
0 & \sin \theta_{c} y_{c} & 0 \\
0 & \cos \theta_{c} y_{c} & 0 \\
0 & 0 & y_{t}
\end{array}\right), \\
& Y_{d} \equiv \frac{\left\langle y_{\mathrm{d}}\right\rangle}{\Lambda_{f}}+\frac{\left\langle\chi_{d}^{L}\right\rangle\left\langle\chi_{d}^{R \dagger}\right\rangle}{\Lambda_{f}^{2}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y_{s} & 0 \\
0 & 0 & y_{b}
\end{array}\right) .
\end{aligned}
$$

without unnatural fine-tunings

* The masses of the first family and the other angles from nonrenormalizable terms or other corrections or replicas ?

Towards a realistic 3 family spectrum

Combining fundamentals and bi-fundamentals

i.e. combining $d=5$ and $d=6$ Yukawa operators

$$
\begin{gathered}
\Sigma_{u} \sim(3, \overline{3}, 1), \quad \Sigma_{d} \sim(3,1, \overline{3}), \quad \Sigma_{R} \sim(1,3, \overline{3}), \\
\chi_{u}^{L} \in(3,1,1), \quad \chi_{u}^{R} \in(1,3,1), \quad \chi_{d}^{L} \in(3,1,1), \quad \chi_{d}^{R} \in(1,1,3) .
\end{gathered}
$$

The Yukawa Lagrangian up to the second order in $1 / \Lambda_{f}$ is given by:

$$
\mathscr{L}_{Y}=\bar{Q}_{L}\left[\frac{\Sigma_{d}}{\Lambda_{f}}+\frac{\chi_{d}^{L} \chi_{d}^{R \dagger}}{\Lambda_{f}^{2}}\right] D_{R} H+\bar{Q}_{L}\left[\frac{\Sigma_{u}}{\Lambda_{f}}+\frac{\chi_{u}^{L} \chi_{u}^{R \dagger}}{\Lambda_{f}^{2}}\right] U_{R} \tilde{H}+\text { h.c. },
$$

LHC is more competitive for concrete seesaw models:

Low M, large Y is typical of seesaws with approximate Lepton Number conservation

U(1) $\mathbf{L N}^{\mathbf{N}}$

(->~degenerate heavy neutrinos)
These models separate the flavor and the lepton number scale

Wyler+Wolfenstein 83, Mohapatra+Valle 86, Branco+Grimus+Lavoura 89, Gonzalez-Garcia+Valle 89, Ilakovac + Pilaftsis 95, Barbieri+Hambye + Romanino 03, Raidal+Strumia+Turzynski 05, Kersten+Smirnov 07, Abada+Biggio+Bonnet + Gavela + Hambye 07, Shaposhnikov 07, Asaka+Blanchet 08, Gavela+Hambye+D. Hernandez+ P. Hernandez 09

For instance, in the minimal seesaw I, Lepton number scale and flavour scale linked:

$$
\begin{gathered}
\mathscr{L}_{M_{\nu}}=\left[\begin{array}{cc}
0 & \mathbf{Y}^{\mathrm{T}} \mathrm{v} \\
\mathbf{Y} \mathrm{v} & \mathbf{M}
\end{array}\right] \\
-\mathcal{L}_{\text {secesav }}=\bar{L} H Y_{E} E_{R}+\bar{L} \tilde{H} Y N+M \bar{N} N^{c}+\text { h.c. } \\
\mathrm{m}_{\mathrm{v}}=\frac{\mathbf{Y}^{2} \mathrm{v}^{2} \mathbf{Y}^{\mathrm{T}}}{\mathrm{M}} \quad \mathbf{U l N} \sim \frac{\mathbf{Y v}}{\mathrm{M}}
\end{gathered}
$$

* What is the role of the neutrino flavour group?

$$
\text { e.g. } O(2)_{\mathrm{NR}} \quad \text {... leptons }
$$

e.g. seesaw with approximately conserved lepton number

$$
\mathcal{L}_{\mathcal{M}_{\nu}}=\left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right)\left(\begin{array}{ccc}
0 & v Y & v Y^{\prime} \\
v Y^{\top} & 0 & \mathbf{M}^{\mathrm{T}} \\
v Y^{\prime T} & \mathbf{M} & 0
\end{array}\right)\left(\begin{array}{c}
\ell_{L}^{c} \\
N \\
N^{\prime}
\end{array}\right)
$$

* What is the role of the neutrino flavour group?

$$
\text { e.g. } O(2)_{\mathrm{NR}} \quad \text {... leptons }
$$

e.g. seesaw with approximately conserved lepton number

$$
\mathcal{L}_{\text {mass }}=\bar{\ell}_{L} \phi Y_{E} E_{R}+\bar{\ell}_{L} \tilde{\phi} \tilde{Y}_{\nu}\left(N_{1}, N_{2}\right)^{T}+M\left(\bar{N}_{1} N_{1}^{c}+\bar{N}_{2} N_{2}^{c}\right)+\text { h.c. }
$$

$$
\tilde{Y}_{\nu}=\frac{1}{\sqrt{2}} U_{P M N S} f_{m_{\nu}}\left(\begin{array}{cc}
y+y^{\prime} & -i\left(y-y^{\prime}\right) \\
i\left(y-y^{\prime}\right) & y+y^{\prime}
\end{array}\right)
$$

$$
\begin{gathered}
U(3)_{\ell_{L}} \times \cdot U(3)_{E_{R}} \times O(2)_{N} \\
Y_{E}=\frac{\left.y_{E}\right\rangle}{\Lambda_{f}} \sim(3, \overline{3}, 1) ; \quad\left(Y, Y^{\prime}\right)=\frac{<y_{v}>}{\Lambda} \sim(3,1,2) \\
<y_{E}>\propto\left(\begin{array}{ccc}
\mathrm{m}_{\mathrm{e}} & 0 & 0 \\
0 & \mathrm{~m}_{\mu} & 0 \\
0 & 0 & \mathrm{~m}_{\tau}
\end{array}\right)<y_{v}>\propto U_{P M N S}\left(\begin{array}{cc}
0 & 0 \\
\sqrt{m_{\nu_{2}}} & 0 \\
0 & \sqrt{m_{\nu_{3}}}
\end{array}\right)\left(\begin{array}{cc}
-i y & i y^{\prime} \\
y & y^{\prime}
\end{array}\right)
\end{gathered}
$$

*In the $O(2)$ model used before: $\operatorname{tgh} 2 \omega=\frac{y^{2}-y^{\prime 2}}{y^{2}-y^{\prime 2}}$ and

$$
\operatorname{tg} 2 \theta=\sin 2 \alpha \frac{2 \sqrt{m_{\nu_{2}} m_{\nu_{1}}}}{m_{\nu_{2}}-m_{\nu_{1}}} \frac{\mathrm{y}^{2}-\mathrm{y}^{\prime 2}}{\mathrm{y}^{2}-\mathrm{y}^{\prime 2}}
$$

$$
\alpha=\pi / 4 \text { or } 3 \pi / 4
$$

*If we had used instead a flavor $\operatorname{SU}(2)$ model $\sinh 2 \omega=0-->$ NO MIXING

* e- $\mu, \mu-\tau$ etc. oscillations and rare decays studied:

Gavela, Hambye, Hernandez ${ }^{2}$;

$$
\operatorname{Br}(\mu \rightarrow e \gamma) / \operatorname{Br}(\tau \rightarrow e \gamma) \quad \operatorname{Br}(\mu \rightarrow e \gamma) / \operatorname{Br}(\tau \rightarrow \mu \gamma)
$$

IH

Gavela, Hambye, Hernandez²;

Degeneracy in the Majorana phase α

Figure 3: Left: Ratio $B_{e \mu} / B_{e \tau}$ for the normal hierarchy (solid) and the inverse hierarchy (dashed) as a function of α for $\left(\delta, s_{13}\right)=(0,0.2)$. Right: the same for the ratio $B_{c \mu} / B_{\mu \tau}$.

Figure 5: $m_{e e}$ as a function of α for the normal (solid) and inverted (dashed) hierarchies, for $\left(\delta, s_{13}\right)=(0,0.2)$.

Gavela, Hambye, Hernandez ${ }^{2}$;

* Alonso + Li, 2010, MINSIS report: possible suppresion of μ-e transitions for large θ_{13}
* e- $\mu, \mu-\tau$ etc. oscillations and rare decays studied:

Gavela, Hambye, Hernandez² 09 ;

* Alonso $+\mathrm{Li}, 2010:$ possible suppresion of μ-e transitions ->important impact of $\nu_{\mu}-v_{\tau}$ at a near detectors

$$
B_{\mu \rightarrow e \gamma} \propto\left|Y_{N_{e}} Y_{N_{\mu}}\right|^{2}
$$

i.e. $\quad Y_{N}^{T} \simeq y\left(\begin{array}{c}e^{i \delta} s_{13}+e^{-i \alpha} s_{12} r^{1 / 4} \\ s_{23}\left(1-\frac{\sqrt{r}}{2}\right)+e^{-i \alpha} r^{1 / 4} c_{12} c_{23} \\ c_{23}\left(1-\frac{\sqrt{r}}{2}\right)-e^{-i \alpha} r^{1 / 4} c_{12} s_{23}\end{array}\right) \quad r=\frac{\left|\Delta m_{12}^{2}\right|}{\left|\Delta m_{13}^{2}\right|}$ Normal hierarchy,$~ . ~$

* e- $\mu, \mu-\tau$ etc. oscillations and rare decays studied:

Gavela, Hambye, Hernandez² 09;

* Alonso +Li , 2010: possible suppresion of μ-e transitions ->important impact of $\nu_{\mu}-v_{\tau}$ at a near detectors

We find that there are regions where an experiment as MINSIS
would improve the present bounds on our Model

Some good ideas:

"Partial compositeness":
D.B. Kaplan-Georgi in the 80s proposed a composite Higgs:

* Higgs light because the whole Higgs doublet is multiplet of goldstone bosons

They explored SU(5)--> SO(5).
$\underset{\text { (Kaplan, Georgi, Dimopoulos, Banks, Dugan, Galison) }}{\text { Explicit breaking of } \operatorname{SU}(2) x U(1) \text { symmetry via external gauged } U(1) ~}$
(Kaplan, Georgi, Dimopoulos, Banks, Dugan, Galison)
Nowadays SO(5)--> SO(4) and explicit breaking via SM weak interaction (Contino, Nomura, Pomarol; Agashe, Contino, Pomarol; Giudice, Pomarol, Ratazzi, Grojean; Contino, Grojean, Moretti; Azatov, Galloway, Contino...)

SO(6) --> SO(5) to get also DM (Frigerio, Pomarol, Riva, Urbano)

Anarchy: alive with not so small θ_{13} and not θ_{23} not maximal
no symmetry in the lepton sector, just random numbers

- Does not relate mixing to spectrum
- Does not address both quarks and leptons

*3 families with $\mathrm{O}(2)_{\mathrm{NR}}$:

- 3 light +2 heavy N degenerate: bad θ_{12} quadrant. It cannot accomodate data!
- 3 light +3 heavy N : OK for $\boldsymbol{\theta}_{23}$ maximal and spectrum
experimentally $\sin 2 \theta_{23}=0.41+-0.03$ or $0.59+-0.02$
Gonzalez-Garcia, Maltoni, Salvado, Schwetz Sept. 2012
*What about the other angles?

$$
\left(\begin{array}{cc}
(\mathrm{O}(2) \\
0 & 0
\end{array}()\right)_{3 \times 3}
$$

*3 families with $\mathrm{O}(2)_{\mathrm{NR}}$:

- 3 light +2 heavy N degenerate: bad θ_{12} quadrant. It cannot accomodate data!
- 3 light +3 heavy N : OK for $\boldsymbol{\theta}_{23}$ maximal and spectrum

Moriond this morning, T2K best fit point $\sin ^{2} 2 \theta_{23}=1.00-0.068$ 90\%CL

$$
\text { -> } 45^{\circ} \text { ! }
$$

*What about the other angles?

BSM electroweak

* HIERARCHY PROBLEM

Fine-tuning issue: if BSM physics, why Higgs so light
Interesting mechanisms to solve it: SUSY, strong-int. light Higgs, extra-dim....

In practice, none without further fine-tunings

BSM electroweak

* HIERARCHY PROBLEM

Fine-tuning issue: if BSM physics, why Higgs so light
Interesting mechanisms to solve it: SUSY, strong-int. light Higgs, extra-dim....
In practice, none without further fine-tunings

* FLAVOUR PUZZLE: ~no theoretical progress

New B physics data AND neutrino masses and mixings
Understanding of the underlying physics stalled since 30 years. BSM theories tend to make it worse.

BSM electroweak

* HIERARCHY PROBLEM

Fine-tuning issue: if BSM physics, why Higgs so light
Interesting mechanisms to solve it: SUSY, strong-int. light Higgs, extra-dim....
In practice, none without further fine-tunings

* FLAVOUR PUZZLE : no progress

New B physics data AND neutrino masses and mixings
Understanding of the underlying physics stalled since 30 years. BSM theories tend to make it worse.

$$
\longrightarrow \Lambda_{\mathrm{f}} \sim \mathbf{1 0 0} \text { 's TeV ??? }
$$

The FLAVOUR WALL for BSM

i) Typically, BSMs have electric dipole moments at one loop
i.e susy MSSM:

< 1 loop in SM ---> Best (precision) window of new physics
ii) FCNC
i.e susy MSSM:

competing with SM at one-loop

The FLAVOUR WALL for BSM

i) Typically, BSMs have electric dipole moments at one loop
i.e susy MSSM:

< 1 loop in SM ---> Best (precision) window of new physics
ii) FCNC
i.e susy MSSM:

competing with SM at one-loop

What happens if we add

non-renormalizable terms to the potential?

In fact one should consider as many invariants as physical variables

seesaw I with Just TWO heavy neutrinos

$$
\mathcal{L}_{\mathcal{M}_{\nu}}=\left(\overline{\bar{L}}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right)\left(\begin{array}{ccc}
0 & v Y & v Y^{\prime} \\
v Y^{\top} & 0 & \mathbf{M} \\
v Y^{\prime \top} & \mathbf{M} & 0
\end{array}\right)\left(\begin{array}{c}
\ell_{L}^{c} \\
N \\
N^{\prime}
\end{array}\right)
$$

Lepton number scale and flavour scale distinct

Just TWO heavy neutrinos

$$
\begin{gathered}
\mathcal{L}_{\mathcal{M}_{\nu}}=\left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right)\left(\begin{array}{ccc}
0 & v Y & v Y^{\prime} \\
v Y^{T} & 0 & \mathbf{M} \\
v Y^{\prime T} & \mathbf{M} & 0
\end{array}\right)\left(\begin{array}{c}
\ell_{L}^{c} \\
N \\
N^{\prime}
\end{array}\right) \\
\mathrm{m}_{v}=\mathbf{Y} \frac{\mathrm{v}^{2} \mathbf{Y}^{\prime} \mathrm{T}}{\mathrm{M}} \quad \mathbf{U}_{\mathrm{IN}} \sim \frac{\mathbf{Y}}{\mathrm{M}} \\
\text {--> Lepton number conserved conserved if either } \mathrm{Y} \text { or } \mathrm{Y}^{\prime} \text { vanish: }
\end{gathered}
$$

Raidal, Strumia, Turszynski
Gavela, Hambye, Hernandez²

Just TWO heavy neutrinos

$$
\mathcal{L}_{\mathcal{M}_{\nu}}=\left(\bar{e}_{L}, \bar{N}^{c}, \bar{N}^{\prime \prime}\right)\left(\begin{array}{ccc}
0 & v Y & v Y^{\prime} \\
v Y^{\top} & 0 & \mathbf{M} \\
v Y^{\prime T} & \mathbf{M} & 0
\end{array}\right)\left(\begin{array}{c}
\ell_{L} \\
N \\
N^{\prime}
\end{array}\right)
$$

--> One massless neutrino and only one Majorana phase $\boldsymbol{\alpha}$ the Yukawas are determined up to their overal magnitude

$$
\text { N.H. } \quad Y=\frac{y}{\sqrt{m_{\nu_{2}}+m_{\nu_{3}}}} U_{P M N S}\left(\begin{array}{c}
0 \\
-i \sqrt{m_{\nu_{2}}} e^{-i \alpha} \\
\sqrt{m_{\nu_{3}}} e^{-i \alpha}
\end{array}\right)
$$

Gavela, Hambye, Hernandez ${ }^{2}$
Raidal, Strumia, Turszynski

Comparing the scales reached by

Neutrino Oscillations vs μ-e experiments vs LHC

e.g. in Seesaw type I scales (heavy singlet fermions)

* v-oscillations: $10^{-3} \mathrm{eV}-\mathrm{M}_{\mathrm{Gut}} \sim 10^{15} \mathrm{GeV}$, because interferometry
* μ-e conversion: $2 \mathrm{MeV}-6000 \mathrm{GeV}$
* LHC: ~ \# TeV

The flavour symmetry is $\mathbf{G}_{\mathbf{f}}=U(3)_{\ell_{L}} \times U(3)_{E_{R}} \times O(2)_{N}$ adds a new invariant for the lepton sector, in total:

$$
\begin{array}{ll}
\operatorname{Tr}\left(y_{\mathrm{E}} \mathcal{y}_{\mathrm{E}}^{+}\right) & \operatorname{Tr}\left(y_{\mathrm{E}} y_{\mathrm{E}}^{+}\right)^{2} \\
\operatorname{Tr}\left(y_{v} y_{v}^{+}\right) & \operatorname{Tr}\left(y_{v} y_{v}^{+}\right)^{2}
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(y_{\mathrm{E}}{y_{\mathrm{E}}^{+}}^{y_{v}}{y_{v}^{+}}^{+} \longleftarrow{ }_{\mathrm{mixing}}^{\operatorname{Tr}\left(y_{v} \sigma_{2} y_{v}^{+}\right)^{2<--} \mathrm{O}(2)_{\mathrm{N}}}\right.
\end{aligned}
$$

$\mathrm{O}(2)_{\mathrm{N}}$ is simply associated to Lepton Number

Leptons

Just TWO heavy neutrinos

$$
\mathcal{L}_{\mathcal{M}_{\nu}}=\left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right)\left(\begin{array}{ccc}
0 & v Y & v Y^{\prime} \\
v Y^{\top} & 0 & \mathbf{M} \\
v Y^{\prime T} & \mathbf{M} & 0
\end{array}\right)\left(\begin{array}{c}
\ell_{L}^{c} \\
N \\
N^{\prime}
\end{array}\right)
$$

the Yukawas are determined up to their overal magnitude

$$
\text { N.H. } \quad Y=\frac{y}{\sqrt{m_{\nu_{2}}+m_{\nu_{3}}}} U_{P M N S}\left(\begin{array}{c}
0 \\
-i \sqrt{m_{\nu_{\nu}}} e^{-i \alpha} \\
\sqrt{m_{\nu_{3}}} e^{i \alpha}
\end{array}\right)
$$

Leptons

Just TWO heavy neutrinos

$$
\mathcal{L}_{\mathcal{M}_{\nu}}=\left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right)\left(\begin{array}{ccc}
0 & v Y & v Y^{\prime} \\
v Y^{\top} & 0 & \mathbf{M} \\
v Y^{\prime T} & \mathbf{M} & 0
\end{array}\right)\left(\begin{array}{c}
\ell_{L}^{c} \\
N \\
N^{\prime}
\end{array}\right)
$$

the Yukawas are determined up to their overal magnitude

$$
\text { N.H. } \quad Y=\frac{y}{\sqrt{m_{\nu_{2}}+m_{\nu_{3}}}} U_{P M N S}\left(\begin{array}{c}
0 \\
-i \sqrt{m_{\nu_{\nu}}} e^{-i \alpha} \\
\sqrt{m_{\nu_{3}}} e^{-i \alpha}
\end{array}\right)
$$

The flavour symmetry is $\mathbf{G}_{\mathbf{f}}=U(3)_{\ell_{L}} \times U(3)_{E_{R}} \times O(2)_{N}$

Just TWO heavy neutrinos

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{M}_{\nu}}=\left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right)\left(\begin{array}{ccc}
0 & v Y & v Y^{\prime} \\
v Y^{\top} & 0 & \mathbf{M} \\
v Y^{\prime T} & \mathbf{M} & 0
\end{array}\right)\left(\begin{array}{c}
\ell_{L}^{c} \\
N \\
N^{\prime}
\end{array}\right) \\
& \text { he Yukawas are determined up to their overal magnitude }
\end{aligned}
$$

$$
\text { N.H. } \quad Y=\frac{y}{\sqrt{m_{\nu_{2}}+m_{\nu_{3}}}} U_{P M N S}\left(\begin{array}{c}
0 \\
-i \sqrt{m_{\nu_{2}}} e^{-i \alpha} \\
\sqrt{m_{\nu_{3}}{ }^{2}} e^{i \alpha}
\end{array}\right)
$$

The flavour symmetry is $\mathbf{G}_{\mathbf{f}}=U(3)_{\ell_{L}} \times U(3)_{E_{R}} \times O(2)_{N}$

Jacobian Analysis: Mixing

What is the symmetry in this boundary?

$$
Y_{\nu}=\left(\begin{array}{ccc}
y_{1} & 0 & 0 \\
0 & \frac{y_{2}}{\sqrt{2}} & -i \frac{y_{2}}{\sqrt{2}} \\
0 & \frac{y_{3}}{\sqrt{2}} & i \frac{y_{3}}{\sqrt{2}}
\end{array}\right) \quad \lambda_{3}^{\prime} Y_{\nu}-Y_{\nu} \lambda_{7}=0 ; \lambda_{3}^{\prime}=\operatorname{diag}(0,1,-1),
$$

$U(1)_{\text {diag }}$

related to the $O(2)$ substructure

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-i \omega} & 0 \\
0 & 0 & e^{i \omega}
\end{array}\right) \mathcal{Y}_{\nu}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \omega & \sin \omega \\
0 & -\sin \omega & \cos \omega
\end{array}\right)
$$

In many BSM the Yukawas do not come from dynamical fields:

Some good ideas:

D.B. Kaplan-Georgi in the 80 's proposed a light SM scalar because being a (quasi) goldstone boson: composite Higgs
(D.B. Kaplan, Georgi, Dimopoulos, Banks, Dugan, Galison.......Contino, Nomura, Pomarol; Agashe, Contino, Pomarol; Giudice, Pomarol, Ratazzi, Grojean; Contino, Grojean, Moretti; Azatov, Galloway, Contino... Frigerio, Pomarol, Riva, Urbano...)

Some good ideas:

D.B. Kaplan-Georgi in the 80 's proposed a light SM scalar because being a (quasi) goldstone boson: composite Higgs

Flavour "Partial compositeness" D.B Kaplan 91:

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

Some good ideas:

D.B. Kaplan-Georgi in the 80 's proposed a Higgs light because being a (quasi) goldstone boson: composite Higgs
"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

Some good ideas:

D.B. Kaplan-Georgi in the 80 's proposed a Higgs light because being a (quasi) goldstone boson: composite Higgs
"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

Neutrino masses:

$\mathrm{d}=5$ Weinberg operator
(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

Some good ideas:

D.B. Kaplan-Georgi in the 80 's proposed a Higgs light because being a (quasi) goldstone boson: composite Higgs
"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

Neutrino masses:

$$
\mathrm{m}_{v}=\mathrm{Y} \mathrm{v}^{2} / \mathrm{M} \mathrm{Y}^{\mathrm{T}}
$$

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

Some good ideas:

D.B. Kaplan-Georgi in the 80 's proposed a Higgs light because being a (quasi) goldstone boson: composite Higgs
"Partial compositeness":

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

Neutrino masses:

$$
\mathrm{m}_{v}=\mathrm{Y} \mu \mathrm{v}^{2} / \mathbf{M}^{2}
$$

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

For instance, in discrete symmetry ideas:

The Yukawas are indeed explained in terms of dynamical fields. And they do not need to worry about goldstone bosons.

In spite of θ_{13} not very small, there is activity.
For instance, combine generalized CP (Bernabeu, Branco, Gronau 80s) with discrete Z_{2} groups in the neutrino sector : maximal θ_{23}, strong constraints on values of CP phases
(Feruglio, Hagedorn and Ziegler 2013; Holthausen, Lindner and Schmidt 2013)

They were popular mainly because they can lead easily to large mixings (tribimaximal, bimaximal...)

But:

- Discrete approaches do not relate mixing to spectrum
- Difficulties to consider both quarks and leptons

Some good ideas:

Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless
fermions (Chivukula+ Georgi)
quarks: $\quad G_{\text {flavour }}=\mathrm{U}(3)_{\mathrm{QL}} \times \mathrm{U}(3)_{\mathrm{UR}} \times \mathrm{U}(3)_{\mathrm{DR}}$

Hybrid dynamical-non-dynamical Yukawas:

U(2) (Pomarol, Tomasini! Bartiert, Dvali, Hall, Romanino.......

Sequential ideas (Feldman, Jung, Mannel; Berechiani-Nesti; Feretti e tal., Calibbi et al. ...)

For this talk:
each Ysm -- >one single field \mathcal{Y}

$$
Y_{S M} \sim \frac{\langle Y\rangle}{\Lambda_{\mathrm{fl}}}
$$

Can it shed light on why quark and neutrino mixings are so different?

Alonso, B.G., D. Hernandez, L. Merlo, Rigolin

Assume that the Yukawa couplings correspond to dynamical fields at high energies

$$
\mathbf{Y}_{\mathbf{S M}} \sim<\varphi>\text { or } \mathbf{Y}_{\mathrm{SM}} \sim 1 /<\boldsymbol{1}>\text { or } \ldots \ldots .<(\varphi \chi)^{\mathrm{n}}>
$$

[Cabibbo
Michel,+Radicati, Cabibbo+Maiani
C. D. Froggat, H. B. Nielsen

Anslem+Berezhiani, Berezhiani+Rossi]
(Alonso+Gavela+Merlo+Rigolin 11) ..

For this talk:

each YsM -- >one single field \mathcal{Y}

transforming under the SM flavour group

Anselm+Berezhiani 96; Berezhiani+Rossi 01... Alonso+Gavela+Merlo+Rigolin 11...

Generalization to any seesaw model

> the effective Weinberg Operator

$$
\bar{\ell}_{L} \tilde{H} \frac{Y_{\nu} Y_{\nu}^{T}}{M} \tilde{H}^{T} \ell_{L}^{c}
$$

shall have a flavour structure that breaks $U(3)\llcorner$ to $O(3)$

$$
\frac{Y_{\nu} v^{2} Y_{\nu}^{T}}{M}=\frac{y_{\nu} v^{2}}{M}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

then the results apply to any seesaw model

This did not need any ad-hoc discrete symmetries, but simply using the in-built continuous flavour symmetry of the $S M+$ seesaw, $U(3)^{5} \times O(3)$

Also, note that often people working with "flavons" invents a "texture" that goes well with data, and then tries to design a potential that leads to it. In our case, the inevitable potential minima encompass the different patterns of quarks and leptons.

Some good ideas, based on continuous symmetries:

Frogatt-Nielsen '79: U(1)flavour symmetry

- Yukawa couplings are effective couplings,
- Fermions have U(1)flavour charges

$$
\left.\left(\frac{\varphi}{\Lambda}\right)^{\mathrm{n}} \mathrm{QHq}_{R} \quad, Y \sim \neq \frac{\varphi}{\Lambda}\right)^{n}
$$

e.g. $\mathrm{n}=0$ for the top, n large for light quarks, etc.
$\mathrm{M} \sim 1 \mathrm{TeV}$ is suggested by electroweak hierarchy problem

$$
\begin{aligned}
\delta m_{H}^{2}= & -3 \frac{\lambda_{3}}{16 \pi^{2}}\left[\Lambda^{2}+M_{\Delta}^{2}\left(\log \frac{M_{\Delta}^{2}}{\Lambda^{2}}-1\right)\right] \\
& -\frac{\mu_{\Delta}^{2}}{2 \pi^{2}} \log \left(\left|\frac{M_{\Delta}^{2}-\Lambda^{2}}{M_{\Delta}^{2}}\right|\right)
\end{aligned}
$$

(Abada, Biggio, Bonnet, Hambye, M.B.G.)

$$
\delta m_{H}^{2}=-3 \frac{Y_{\Sigma}^{\dagger} Y_{\Sigma}}{16 \pi^{2}}\left[2 \Lambda^{2}+2 M_{\Sigma}^{2} \log \frac{M_{\Sigma}^{2}}{\Lambda^{2}}\right]
$$

In some BSM theories, Yukawas do correspond to dynamical fields:

- for instance in discrete symmetry scenarios
- also with continuous symmetries

