

Dario Gasparrini, Marco Ajello, Roger Romani, Micheal Shaw et al. on behalf of the Fermi-LAT collaboration

THE COSMIC EVOLUTION OF BL LACERTAE OBJECTS

LUMINOSITY FUNCTION

- Number of sources per bin of luminosity per comoving volume unit (Mpc³)
- It tells us:
 - How the source population formed, evolved, grew
 - Contribution to the gamma-ray background
- A reliable luminosity function of BL Lacs is not derived yet

BL LACERTAE OBJECTS

Active Galactic Nuclei:

- Optical Spectrum dominated by the continuum (jet) emission
- Jet pointing to us
- Weak disk related emission
- No emission lines visible
 <u>no redshift</u>

REDSHIFT ISSUE

BL Lac samples suffered from redshift completeness problem Literature BL Lac Luminosity Functions

- usually have < 50 objects
- >30% redshift incompleteness

• How to deal with this problem?

OUR BL LACS SAMPLE

- 211 objects from 1° Fermi AGN catalog (Abdo et al. 2009)
 - ~ 100 with spectroscopic redshift
 - ~ 100 with redshift constrains:
 - Photometric Z (Rau et al. 2012)
 - Photometric Upper Limit (Rau et al. 2012)
 - Spectroscopic Upper Limit (Shaw et al. 2013)
 - Spectroscopic Lower Limit for Intervening system (Shaw et al. 2013)
 - Host galaxy Fitting (Shaw et al. 2013)
 - 206/211 have redshift info

• Largest and most complete BL Lac sample ever !

HOW TO USE THE CONSTRAINS

- For each object, derive a probability density function (PDF) of the source redshift combining by:
 - All the constrains
 - A priori function
- The prior would be true distribution dN/dz for all the Fermi BL Lacs if there were no selection effects
 - Since we don't know it we use the luminosity function and then iterate
 - Let's start from a flat a priori distribution

PDF EXAMPLES

RECIPE FOR A LUMINOSITY FUNCTION

- 1. Produce N(~1000) samples of 206 BLLs
- 2. For each source draw a random redshift from the source PDF
- 3. Derive a LF for each sample
- 4. Average out all the LFs to obtain the final one
- 5. Use the LF to predict the dN/dz (~priori)
- 6. If "predicted dN/dz" is different than *priori* (instep 2), update *priori* and iterate 1-to-6 till convergence

4-8-2013 Windows on the Universe

LUMINOSITY-DEPENDENT DENSITY EVOLUTION

 Density of BLLac evolves as (1+z)^{p1}

• p1=p1* + τ *(Log*L*-46)

L _γ (erg s⁻¹)	p₁ Evolution
1044	<0
10 ⁴⁶	2.1
10 ⁴⁷	~7

LOCAL LF ($Z\sim 0$)

4-8-2013 Windows on the Universe

REPRESENTATION

Evolution is positive for high luminosity sources

- Evolution is <u>negative</u> for low luminosity sources
- Evolution is similar to FSRQ for L >10⁴⁶

4-8-2013 Windows on the Universe

COMPARISON ON DIFFERENT BL LAC CLASSES

4-8-2013 Windows on the Universe

SPACE DENSITY

- The increase in the space density of BL Lacs at low z is produced by the negative evolution of HSPs
- The rise in number of HSPs coincides with the decline in number of FSRQs

 Possible explanation: HSPs might be end-ofstate/starved/recycled FSRQs

genetic link *à la* Cavaliere & D'Elia 02, Böttcher&Dermer 02

FINAL REMARKS

- Largest and most complete sample
- BL Lac class evolution is complex
 - Most luminous evolve strongly
 - Less luminous have negative evolution (mostly HSP)
- The nearby universe (z~0) is populated by massive black holes which are starving for gas
- Many outcomes foreseen:
 - BL Lacs might produce a substantial fraction of the Isotropic Gamma-Ray Background (10-15%)
 - CTA will help finding hundreds of sources

THANK YOU!

ANALYTIC STUFF

$$\frac{dN}{d\Gamma} = e^{-\frac{(\Gamma - \mu)^2}{2\sigma^2}}$$

$$z_c(L_{\gamma}) = z_c^* \cdot \left(L_{\gamma} / 10^{48}\right)^{\alpha}$$

$$p1(L_{\gamma}) = p1^* + \tau \times (Log_{10}(L_{\gamma}) - 46)$$

14-8-2013 Windows on the Universe

EFFECT OF EBL

14-8-2013 Windows on the Universe

FSRQ LF

THE FERMI OBSERVATORY

- Satellite gamma-ray telescope
 - Large Area Telescope (LAT)
 - 20 MeV > 300 GeV
 - Gamma Burst Monitor (GBM)
 - 8 KeV 40 MeV
- Key features
 - Huge field of view (2.4sr)
 - 20% sky any instant
 - All sky for 30' every 3h
 - Huge energy range
 - Including unexplored 10-100 GeV range

LARGE AREA TELESCOPE

Atwood, W. B. et al. 2009, ApJ, 697, 1071

modular - 4x4 array
3ton – 650watts

ANTI-COINCIDENCE (ACD):

• Segmented (89 tiles + 8 ribbons)

LAT

- Self-veto @high energy limited
- 0.9997 detection efficiency

TRACKER/CONVERTER (TKR):

- Si-strip detectors
- ~80 m2 of silicon (total)
- W conversion foils
- 1.5 X0 on-axis
- 18XY planes
- •~106 digital elx chans
- Highly granular
- High precision tracking
- Average plane PHA

CALORIMETER (CAL):

- 1536 Csl(Tl) crystals
 8.6 X0 on-axis
- large elx dynamic range (2MeV-60GeV per xtal)
- Hodoscopic (8x12)
- Shower profile recon
- leakage correction
- EMvs HAD separation