W/Z and direct photon production at the LHC

Massimo Casarsa

INFN INFN, Trieste, Italy

on behalf of the ATLAS, CMS, and LHCb Collaborations

Rencontres du Vietnam: Windows on the Universe ICISE, Quy Nhon, Vietnam, August 11-17 2013

The study of the electroweak gauge bosons at LHC is producing a very rich harvest of results. This talk will show a selection of results focusing on the most recent ones on full datasets:

overview and experimental apparatuses;

- inclusive W/Z production cross-sections and Z transverse momentum at 8 TeV;
- inclusive and differential W/Z production cross-sections at 7 TeV;
- lepton charge asymmetry in W production;
- prompt photon and diphoton production;
- summary.

Outline

- The direct production of electroweak gauge bosons in pp collisions provides a colorless probe of the hard scattering process.
- Theory:
 - W/Z production known at NNLO in perturbative QCD.
- Experiment:
- at LHC among the most abundant processes;
 leptonic decays provide clean signatures;
 challenge: precision measurements dominated by systematics.
- Theory/experiment comparison allows to perform stringent pQCD tests, to constrain and explore the proton PDFs in previously not-accessible kinematic regions.

The experimental apparatuses

General purpose detectors:

- vertex detector and tracker,
- electromagnetic and hadronic calorimetry,
- muon detectors.
- ATLAS and CMS central detectors.
- LHCb instrumented within $2 < \eta < 5$.

INFN

W/Z inclusive production @ 8 TeV

- Special 8 TeV low-pileup dataset (18.7 pb⁻¹);
- W $\rightarrow \ell_{\nu}$ and Z/ $\gamma^* \rightarrow \ell \ell$ channels:

 electrons: E_T(e) > 25 GeV/c, |η(e)| < 1.44 or 1.57 < |η(e)| < 2.5;
 muons: p_T(μ) > 25 (20 for Z's) GeV/c, |η(μ)| < 2.1;
 60 < M_{ee} < 120 GeV/c².

INFN

Z boson transverse momentum @ 8 TeV

- Special 8 TeV low-pileup dataset (18.4 pb⁻¹);
- $Z/\gamma^* \rightarrow \mu\mu$ channel with: $p_T(\mu) > 20$ GeV/c and $|\eta(\mu)| < 2.1$;

$$60 < M_{\text{m}} < 120 \text{ GeV/c}^2;$$

- low- q_{τ} region tests non-perturbative soft gluon emission;
- high- q_{T} region probes pQCD hard gluon radiation in initial state.

Drell-Yan leptons ϕ^* **distribution**

- Full 7 TeV dataset (4.6 fb⁻¹);
- $Z/\gamma^* \rightarrow ee$, $\mu\mu$ channels:
 - $p_{T}(\ell) > 20 \text{ GeV/c and } |\eta(\ell)| < 2.4;$
 - $66 < M_{\ell\ell} < 116 \text{ GeV/c}^2$.

INFN

High-mass DY differential cross-section

- Full 7 TeV dataset (4.9 fb⁻¹);
- $Z/\gamma^* \rightarrow ee$ channel:
 - p_T(e) > 25 GeV/c, |η(e)| < 2.5;
 116 < M_{ee} < 1500 GeV/c².

INFN

Drell-Yan differential cross-section

Full 7 TeV dataset;

ΙΝΓΝ

- $Z/\gamma^* \rightarrow \mu\mu$ channel (4.5 fb⁻¹):
 - $p_T(\mu_1) > 14 \text{ GeV/c}, p_T(\mu_2) > 9 \text{ GeV/c}, |\eta(\mu_{1,2})| < 2.4;$ • $15 < M_{\text{m}} < 1500 \text{ GeV/c}^2.$
- $Z/\gamma^* \rightarrow ee$ channel (4.8 fb⁻¹):
 - $p_T(e_1) > 20 \text{ GeV/c}, p_T(e_2) > 10 \text{ GeV/c}, |\eta(e_{1,2})| < 2.5;$ • $15 < M_{ee} < 1500 \text{ GeV/c}^2.$

Z differential production cross-section

INFN

Rencontres du Vietnam: Windows on the Universe – August 11-17, 2013

10

$Z/\gamma^* \rightarrow ee/\tau\tau$ inclusive production

- 7 TeV dataset;
- $Z/\gamma^* \rightarrow ee$ channel (0.94 fb⁻¹): Z
 - p_T(e) > 20 GeV/c, 2 < η(e) < 4.5;
 60 < M₂ < 120 GeV/c².

- $Z/\gamma^* \rightarrow \tau \tau (1 \text{ fb}^{-1})$:
 - p_T(τ₁) > 20 GeV/c, p_T(τ₂) > 5 GeV/c, 2 < η(e,μ) < 4.5, 2.25 < η(τ_h) < 3.75;
 60 < M_{TT} < 120 GeV/c².

$$\sigma_{\text{pp}\rightarrow \text{Z}\rightarrow ee} = 76.0 \pm 0.8_{\text{stat}} \pm 2.0_{\text{syst}} \pm 2.6_{\text{lumi}} \text{ pb}$$

 $p_T^\ell > 20 \text{ GeV}/c$ LHCb $2.0 < \eta^{\ell} < 4.5$ MSTW08 $\sqrt{s} = 7 \text{ TeV}$ $60 < M_{\ell\ell} < 120 \text{ GeV}/c^2$ $\tau_{\mu}\tau_{\mu}$ $\tau_{\mu}\tau_{e}$ $\tau_e \tau_\mu$ $\tau_{\mu}\tau_{h}$ $\mu^+\mu^-$ 707580 85 90 5560 65 $\sigma_{pp \to Z^0 \to \ell^+ \ell^-}$ [pb]

$$\sigma_{\rm pp \rightarrow Z \rightarrow \tau\tau} = 71.4 \pm 3.5_{\rm stat} \pm 2.8_{\rm syst} \pm 2.5_{\rm lumi} \, \rm pb$$

M. Casarsa

μ^{\pm} charge asymmetry in W production

- ◆ 7 TeV dataset (4.7 fb⁻¹);
- W → μν channel:
 p_T(μ) > 25 GeV/c, |η(μ)| < 2.4;
- lepton charge asymmetry: $A(\eta) = \frac{\frac{d\sigma}{d\eta} (W^{+} \to \ell^{+} \nu) - \frac{d\sigma}{d\eta} (W^{-} \to \ell^{-} \nu)}{\frac{d\sigma}{d\eta} (W^{+} \to \ell^{+} \nu) + \frac{d\sigma}{d\eta} (W^{-} \to \ell^{-} \nu)}$

INFN

μ^{\pm} charge asymmetry in W production

- ◆ 7 TeV dataset (4.7 fb⁻¹);
- W → μν channel:
 p_T(μ) > 25 GeV/c, |η(μ)| < 2.4;
- lepton charge asymmetry: $A(\eta) = \frac{\frac{d\sigma}{d\eta} (W^{+} \to \ell^{+} \nu) - \frac{d\sigma}{d\eta} (W^{-} \to \ell^{-} \nu)}{\frac{d\sigma}{d\eta} (W^{+} \to \ell^{+} \nu) + \frac{d\sigma}{d\eta} (W^{-} \to \ell^{-} \nu)}$

13

INFN

Isolated prompt photon production

◆ 7 TeV dataset (4.7 fb⁻¹);

Prompt photons (direct and from fragmentation):

- isolation: $E_{T}^{ISO} < 7$ GeV in isolation cone $R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$;
- $100 \le E_{T}(\gamma) \le 1000 \text{ GeV},$
- $|\eta(y)| < 1.37 \text{ or } 1.52 < |\eta(y)| < 2.37.$

Isolated photon pair production

• 7 TeV dataset (4.9 fb⁻¹);

• Photon selection: Isolation: $-4 < E_T^{ISO} < 4 \text{ GeV in } R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4;$ • $E_T(\gamma_1) > 25 \text{ GeV}, E_T(\gamma_2) > 22 \text{ GeV},$ $|\eta(\gamma_{1,2})| < 1.37 \text{ or } 1.52 < |\eta(\gamma_{1,2})| < 2.37.$

15

An overview of recent ATLAS, CMS, and LHCb results has been presented.

- The pQCD predictions on W, Z, and direct photon production have been extensively tested using the 7 TeV datasets and a special low-pileup dataset at 8 TeV.
- Over 20 fb⁻¹ (2 fb⁻¹) of data, collected by ATLAS and CMS (LHCb) at 8 TeV, are available for more precise measurements.