

Study of Rare Decays of B Mesons at B Factories

Fabrizio Bianchi University of Torino and INFN-Torino

Rencontres du Vietnam Windows on the Universe Qui Nhon, Vietnam August 11-17, 2013

DEGLI STUDI DI TORINO

ALMA UNIVERSITAS TAURINENSIS

Why Study B Meson Decays ?

- Constrain the CKM sector of the SM.
 - Observation of CP violation
 - Angles and sides of the UT
- Search for evidence of New Physics beyond the SM
- Two paths in the quest for NP:
 - The relativistic path:
 - Increase the energy and look for direct production of new particles.
 - The quantum path:
 - Increase the luminosity and look for effects of physics beyond the standard model in loop diagrams.
- Recent results on B meson decays already exclude significant phase space of New Physics models.

Overview

- $B^0 \rightarrow \omega \omega$, $\omega \phi$
- Direct A_{CP} in $B \rightarrow X_{s\gamma}$
- Search for Lepton Number Violation in B -> X⁻I⁺I'⁺
- B -> D^(*)τν
- Comments:
 - My selection of recent Babar results
 - Related Belle results are also discussed
 - All BaBar results are on full dataset of 471×10^{6} BB decays
 - Charge conjugate processes are always implied

- At leading order, $\phi\omega$ is pure penguin and $\omega\omega$ is a penguin-tree combination.

F. Bianchi

Anomalies in Charmless Decays with Loops

- Value of $sin(2\beta^{eff})$ somewhat lower than in b->ccs decays
- Quite low value of longitudinally-polarized fraction in $B^0 \rightarrow \phi K^*$ measured by BaBar and Belle.
 - Dominant longitudinal polarization fraction expected from QCD factorization

Belle PRL 94, 221804(2005)

 $\begin{array}{c} \mathbf{B^{0} \rightarrow \phi K^{\star}} \\ f_{L} = 0.45 \pm 0.05 \pm 0.02 \\ f_{L} = 0.494 \pm 0.034 \pm 0.013 \\ f_{L} = 0.499 \pm 0.030 \pm 0.010 \end{array}$ BaBar PRD 78, 092008(2008) Belle (presented at EPS2013)

• Limits on $B^0 \rightarrow \omega \omega$ and $B^0 \rightarrow \phi \omega$ BFs can provide a constraint on amplitudes of $B^0 \rightarrow \phi K^*$. Neither helicity amplitude measurements, nor even significant signal peaks, are required S. Oh, Phys. Rev. D 60, 034006 (1999)

30

15

10

5.24

Preliminary

B⁰ -> ωφ

New Results $B^{0} \rightarrow \omega \omega$ and $B^{0} \rightarrow \phi \omega$: Results Events / 2.5 MeV20 MeV **70**∄ B⁰ -> ωω **B**⁰ -> ωω 50 60 Events ,

40

20

20

Preliminary

B⁰ -> ωφ

15 10 Preliminary Preliminary -0.2 5.26 5.27 5.28 5.29 -0.1 0.1 0.2 5.25 0 ΔE $m_{
m ES}$ BF($\omega\omega$) = (1.2 ± 0.3^{+0.3}_{-0.2}) x 10⁻⁶ (4.4 σ significance) $BF(\omega\phi) < 0.7 \text{ x } 10^{-6} (90\% CL)$

Direct CP Asymmetries in B -> $X_s \gamma$

FCNC process which is forbidden at tree level in SM. New Physics can enter in loops. HFAG branching fraction average: $BF(B \rightarrow X_s \gamma) = (343 \pm 21 \pm 7) \times 10^{-6} (E_{\gamma} > 1.6 GeV)$

Introduction to $B \rightarrow X_s \gamma$

 Effective Hamiltonian can be factorized in terms of shortdistance (C_i, Wilson Coefficients) and long-distance (O_i) terms:

$$H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_i C_i(\mu) O_i$$

• The CP asymmetry A_{CP} is defined as:

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{X}_{S}\gamma) - \Gamma(B \to X_{S}\gamma)}{\Gamma(\overline{B} \to \overline{X}_{S}\gamma) + \Gamma(B \to X_{S}\gamma)}$$

- Difference between charged and neutral B decays: $\Delta A_{CP} = A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma)$
- ΔA_{CP} is proportional to $\text{Im}(C_8^{\text{eff}}/C_7^{\text{eff}})$:

 $\Delta A_{CP}(X_s \gamma) = 4\pi^2 \alpha_s \frac{\overline{\Lambda}_{78}}{m_b} \Im\left(\frac{C_8^{eff}}{C_7^{eff}}\right) \approx 0.12 \frac{\overline{\Lambda}_{78}}{100 MeV} \Im\left(\frac{C_8^{eff}}{C_7^{eff}}\right) 17 \text{ MeV} < \overline{\Lambda}_{78} < 190 \text{ MeV}$ Benzke et al PRL 106, 141801 (2011)

• In SM, C_7^{eff} and C_8^{eff} are real $\rightarrow \Delta A_{CP} \neq 0$ is evidence of NP

B -> $X_s \gamma$: Direct A_{CP} results

- $1.6 < E_{\gamma}^* < 3.0 \text{ GeV}; 0.6 < m_{Xs} < 3.2 \text{ GeV}/c^2; |\Delta E| < 0.15 \text{ GeV}$
- B⁺ tagged by overall charge, B⁰ by Kaon charge.
- Fit m_{ES} for b and b tagged samples simultaneously to extract A_{CP}

- After corrections for backgrounds and detector K⁺/K⁻ response: A_{CP} = 1.7±1.9±1.0%
- Agrees with SM predictions: $-0.6\% < A_{CP} < 2.8\%$

M. Benzke et al., PRL 106, 141801 (2011)

ΔA_{CP} and Wilson Coefficients

- From simultaneous fit to charged and neutral B samples: – $\Delta A_{CP} = 5.0 \pm 3.9 \pm 1.5 \%$
- Set 90% CL constraints on $Im(C_8^{eff}/C_7^{eff})$: - 1.64 < $Im(C_8^{eff}/C_7^{eff})$ < 6.52

F. Bianchi $\Delta A_{CP}(X_s \gamma)$ measurement and first constraint on $Im(C_8^{eff}/C_7^{eff})$

- Lepton Number Violation is highly suppressed in the SM.
- Many New Physics scenarios introduce LNV

 Majorana neutrino exchange
- Searched for the modes:
 - $B^+ \rightarrow \rho^- (\rightarrow \pi^- \pi^0) |^+|'^+$
 - $B^+ \rightarrow K^{\star-} (\rightarrow K_S^0 \pi^- \text{ and } \rightarrow K^- \pi^0) |I^+|'^+$
 - $B^+ \rightarrow D^- (\rightarrow K^- \pi^- \pi^+) |^+|'^+$
 - $B^+ \rightarrow K^- / \pi^- e^+ \mu^+$

Related results:

CLEO: PRD 65, 111102 (2002) Belle: PRD 84, 071106 (2011) BaBar: PRD 85, 071102 (2012) LHCb: PRL 108, 106601 (2012); PRD 85, 112004 (2012)

- New BaBar results
- 11 updated measurements; 90% CL UL in range (1.5 26.4) \times 10⁻⁷
- Order of magnitude improvement over CLEO results.
- Similar precision to Belle for $B^+ \rightarrow D^-I^+I'^+$

Ratio of $B \rightarrow D^{(\star)}\tau v vs B \rightarrow D^{(\star)}I v Decays$

• Semileptonic decays sensitive to charged Higgs.

• We measure:

$$R(D) = \frac{\Gamma(\overline{B} \to D\tau \nu)}{\Gamma(\overline{B} \to D\ell\nu)} \qquad R(D^*) = \frac{\Gamma(\overline{B} \to D^*\tau\nu)}{\Gamma(\overline{B} \to D^*\ell\nu)} \quad \ell = e,\mu$$

- Several experimental and theoretical uncertainties cancel in the ratio
- non-SM contribution from H^{\pm} expected to change rates for $B \to D^{(\star)} \tau \nu$

$$H_{S}^{2HDM} \approx H_{S}^{SM} \times \left(1 - \frac{\tan^{2} \beta}{m_{H^{\pm}}^{2}} \frac{q^{2}}{1 \mp m_{c}/m_{b}} \right) \quad - \quad \text{for } \mathbf{B} \to \mathbf{D}\tau \upsilon + \quad \text{for } \mathbf{B} \to \mathbf{D}^{*}\tau \upsilon$$

$B \rightarrow D^{(\star)}\tau v$: Analysis

Event selection:

- Reconstruct D^(*) candidate
- Exactly one extra lepton candidate (τ→evv,µvv)
- Multivariate analysis to suppress backgrounds (uses control sample and off-peak data)
- *m_{miss}* higher and lepton momentum p^{*}₁ smaller for signal than normalization
- 2D Extended Maximum LH fit to m²_{miss} and p^{*}₁ to extract yields
- Simultaneous fit with B→D^(*)π⁰In to account for D** contribution E Bianchi

$B \rightarrow D^{(\star)}\tau v$: Results

SM expectations in S. Fajfer, J. Kamenik, I. Nisandzic, PRD 85, 094025 (2012).

 $\overset{(0,4)}{\underset{(0,2){(1,2)}{\overset{(0,4)}{\overset{($

PRL 109, 101802 (2012)

- -27% correlation between R(D) and R(D*)
- combined BABAR results 3.4 σ higher than SM

Need more results for confirmations!

PRL 109, 101802 (2012)

$B \rightarrow D^{(*)}\tau v$: Type II 2HDM scan

2HDM affects fit variables distributions and hence the efficiency. PDF recalculated for different values of $tan\beta/m_H$

Summary and Outlook

- New BaBar measurements of:
 - Branching Fractions of $B^0 \rightarrow \omega \omega$, $\omega \phi$,
 - Direct A_{CP} in $B \rightarrow X_{s\gamma}$
 - Search for Lepton Number Violation in B -> $X^{-1+1'+}$
- Average of published BaBar and Belle measurements of B -> $D^{(*)}\tau\nu$ shows a 4.6σ deviation from SM prediction.
 - Eagerly waiting for Belle result on full dataset.
- Looking forward to future data coming from LHCb and Belle II
 - Start of Belle II data taking expected in 2016

The colliders

Dabaip(e) = 0dev p(e) = 0.1dev p(e) = 0.5Belle $p(e^-) = 8$ $GeV p(e^+) = 3.5$ GeV $\beta\gamma = 0.42$

Asymmetric-energy B factories => Flavor Physics at the intensity frontier

Integrated luminosity of B factories

$B^0 \rightarrow \phi K^*$ - Preliminary Results (Numbers)

Parameter	$\phi(K\pi)_0^*$	φ K * (892) ⁰	$\phi K_2^* (1430)^0$
raramotor	0 = 0	0 - 1	v = 2
<i>₿</i> _J (10 ^{−6})	$4.3 \pm 0.4 \pm 0.3$	$10.4 \pm 0.5 \pm 0.5$	$5.5^{+0.9}_{-0.7} \pm 0.7$
f _{LJ}		$0.499 \pm 0.030 \pm 0.010$	$0.918^{+0.029}_{-0.060} \pm 0.008$
$f_{\perp J}$		$0.238 \pm 0.026 \pm 0.005$	$0.056^{+0.050}_{-0.035} \pm 0.006$
$\phi_{\parallel J}$ (rad)		$2.23 \pm 0.10 \pm 0.02$	$3.76 \pm 2.88 \pm 1.32$
$\phi_{\perp J}$ (rad)		$2.37 \pm 0.10 \pm 0.04$	$4.45^{+0.43}_{-0.38} \pm 0.07$
δ_{0J} (rad)		$2.91 \pm 0.10 \pm 0.04$	$3.53 \pm 0.11 \pm 0.12$
А _{СРЈ}	$0.093 \pm 0.094 \pm 0.015$	$-0.007 \pm 0.048 \pm 0.020$	$-0.155^{+0.152}_{-0.133} \pm 0.024$
\mathcal{A}_{CPJ}^0		$-0.030 \pm 0.061 \pm 0.006$	$-0.016^{+0.066}_{-0.051} \pm 0.004$
$\mathcal{A}_{CPJ}^{\perp}$		$-0.14 \pm 0.11 \pm 0.01$	$-0.01^{+0.85}_{-0.67} \pm 0.04$
$\Delta \phi_{\parallel J}$ (rad)		$-0.02 \pm 0.10 \pm 0.01$	$-0.02 \pm 1.08 \pm 0.99$
$\Delta \phi_{\perp J}$ (rad)		$0.05 \pm 0.10 \pm 0.02$	$-0.19 \pm 0.42 \pm 0.06$
$\Delta \delta_{0J}$ (rad)		$0.08 \pm 0.10 \pm 0.01$	$0.06 \pm 0.11 \pm 0.01$

 BR and polarization parameters consistent with existing results
 All parameters related to direct *CP* violation consistent with zero E. Bianchi

B⁰ -> ωω; φω: Analysis Strategy

- Full reconstruction of B⁰ candidates, with $\omega \rightarrow \pi^+\pi^-\pi^0$ and $\phi \rightarrow K^+K^-$.
- Resulting B⁰ signal candidates are characterized by the standard variables: m_{ES} =

$$\Delta E = E_B^* - \frac{1}{2}\sqrt{s}$$
$$= \sqrt{(\frac{1}{2}s + \mathbf{p}_0 \cdot \mathbf{p}_B)^2 / E_0^{*2} - \mathbf{p}_B^2}$$

• Signal, combinatory background, and peaking background yields are extracted from an UML fit to m_{ES} , ΔE , resonance masses and helicities, event shape Fisher discriminant, ω internal helicity angle(s) θ

Di-pion (π+π-) rest frame:

$B^0 \rightarrow \omega \omega$ and $B^0 \rightarrow \omega \phi$: Fit Result

> $B(\omega\omega) = (1.2 \pm 0.3_{-6})^3 \times 10^{-6}$ (4.4 σ significance)

► B(\u03c6\u03

► Largest systematic contributions from fit yield bias estimation (O(5 events) \leq 10% for $\omega\omega$) and marginalizing over longitudinal vs transverse fraction (f_L = 0.88 is used as the nominal central value).

Brand new! To be

submitted to PRL

B -> $X_s \gamma$: Event Selection

- Reconstruct 16 exclusive modes to measure A_{CP}; further 22 modes reconstructed to eliminate peaking background
- Two multivariate classifiers used:
 - Signal Selecting Classifier (SSC): based on signal properties. Factor 2 improvement compared to using ΔE alone.
 - Background Rejection Classifier (BRC): Based on event shapes.
 - Trained in four X_s mass regions, selection criteria based on optimizing sqrt(S/S +B).

	Decay Mode					Decay Mode						
	1	B^+ -	$ ightarrow K^0_S \pi^+ \gamma$			9	$B^+ \to K^+ \pi^+ \pi^- \pi^0 \gamma$					
	2	B^+ -	$B^+ \to K^+ \pi^0 \gamma$			$0 B^+ \to K^0_S \pi^+ \pi^0 \pi^0 \gamma$						
	3	$B^0 \to K^+ \pi^- \gamma$				11 $B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \gamma$						
	4	$4 B^+ \to K^+ \pi^+ \pi^- \gamma$				12 $B^0 \rightarrow K^+ \pi^- \pi^0 \pi^0 \gamma$						
	5	5 $B^+ \rightarrow K^0_S \pi^+ \pi^0 \gamma$				13 $B^+ \rightarrow K^+ \eta \gamma$						
	6	$6 \ B^+ \to K^+ \pi^0 \pi^0 \gamma$				14 $B^0 \to K^+ \eta \pi^- \gamma$						
	7	7 $B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$			1	15 $B^+ \rightarrow K^+ K^- K^+ \gamma$						
	8	B^{+} -	$\rightarrow K_S^0 \pi$	$\pi^+\pi^-\pi^-$	$\gamma 1$	6	B^0	$\rightarrow I$	K^+K	$K^-K^+\pi^-$	γ	
0.45ع	E											
۳ R	Ē											
а 1.4 1.4	E							•••				
ട്ട്0.35	È									•		
	Ē									• •		
0.3	Ē			••				. •	•			
0.25	È											
• • •	E				•	•••						
0.2	E	/			•							
0.15	<u> </u>							• SSC				
	È.	/							000			
0.1	=/							•	ΔEN	linimization		
0.05	; /-							L				
	ŧ,											

0.3

0.4

0.5

[∼] 0.6 Fake Rate

0.1

0.2

B+ -> X-I+I'+: Event Selection

- A multivariate discriminant (BDT) has been constructed to reject backgrounds.
- Event yields from ML fit to m_{ES} , ΔE , BDT, [K*/p/D mass]

Hadronic and Semileptonic Tags

- Semileptonic B decays
 - $B \rightarrow D^* | v$
 - PRO: Higher efficiency $\epsilon_{tag} \sim 1.5\%$
 - CON: more backgrounds, B momentum unmeasured
- Hadronic B decays with charm
 - − $B+\rightarrow D^{(*)0}X^+$ or $B^0 \rightarrow D^{(*)+}X^-$
 - X is a charged system of hadrons among (π, K, π^0, K_s) up to 5 charged particles and 2 neutrals
 - PRO: cleaner events, B momentum reconstructed
 - CON: smaller efficiency

$$\epsilon_{tag} \sim 0.15\%$$

Type-II 2HDM - connection with LHC

 $\tan\beta - m_{H^+}$ BABAR exclusion plot

$\begin{array}{l} & \bigoplus \quad \mathsf{D}(^{\star}) \; \tau \; v: \; \textit{limits on Type-III 2HDM} \\ & \text{General spin-0} \\ & \text{interactions} \end{array} \quad \mathcal{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \Big[(\overline{c} \gamma_{\mu} P_L b) \, (\overline{\tau} \gamma^{\mu} P_L \nu_{\tau}) + S_R (\overline{c} P_R b) \, (\overline{\tau} P_L \nu_{\tau}) + S_L (\overline{c} P_L b) \, (\overline{\tau} P_L \nu_{\tau}) \Big] \\ & \text{Impact on } \mathsf{R}(\mathsf{D}^{(\star)}): \qquad \begin{array}{l} \mathcal{R}(D) = \mathcal{R}(D)_{\text{SM}} + A'_D \operatorname{Re}(S_R + S_L) + B'_D |S_R + S_L|^2 \\ \mathcal{R}(D^{\star}) = \mathcal{R}(D^{\star})_{\text{SM}} + A'_{D^{\star}} \operatorname{Re}(S_R - S_L) + B'_{D^{\star}} |S_R - S_L|^2 \end{array}$

Corresponds to Type-II 2HDM case for $S_L=0$

Crivellin, Greub, & Kokulu, arXiv:1206.2634 (2012); Datta et al, PRD 86, 034027 (2012)

