

A NLO story of massive gauge boson pair production at the LHC

Windows on the Universe Conference, ICISE Quy Nhón, Vietnam

Julien Baglio (in collaboration with Le Duc Ninh and Marcus M. Weber, arXiv:1307.4331) | 14.08.2013

INSTITUT FÜR THEORETISCHE PHYSIK

KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

Introduction

Overview of the calculation

3 Differential distributions and radiative corrections hierarchy

4 Total cross sections and experimental data

Conclusion and outlook

Motivation of the calculation

$pp \rightarrow WW, ZZ, WZ$ are important processes at hadron colliders:

Probe of the non abelian structure of the electroweak sector of the SM

- Important backgrounds for Higgs search
 - \Rightarrow measuring and predicting these processes with high precision is compulsory

Calculational setup

- QCD corrections: NLO corrections to qq̄ → VV, gg → WW, ZZ included (formally a NNLO contribution) [see Ohnemus (1991); Frixion et al. (1992); Frixion et al. (1993); Dixon et al. (1998); Campbell, Ellis (1999); ...]
- EW corrections: NLO virtual and real corrections to $q\bar{q} \rightarrow VV$ including γq and $\gamma \bar{q}$ subprocesses, $\gamma \gamma \rightarrow WW$ included at NLO (MRST2004QED PDF set used)

Tools: FeynArt/FormCalc/LoopTools cross-checked with home-made implementation of 1 loop integrals (LoopInts), MadGraph HELAS routines

Renormalization and substraction method

- Renormalization: on-shell scheme used for EW corrections, calculation cross-checked with dimensional and mass regularization schemes for the infrared singularities
- Infrared singularities: substraction method

$$\sigma^{\rm NLO} = \int_{\phi_n} d\sigma^{\rm Born} + \int_{\phi_n} d\sigma^{\rm virt} + \int_{\phi_{n+1}} d\sigma^{\rm real}$$

with each contribution divergent \Rightarrow cancel soft & collinear singularities before Monte-Carlo integration:

$$\sigma^{
m NLO} = \int_{\phi_n+1} \left(d\sigma^{
m real}|_{arepsilon=0} - d\sigma^A|_{arepsilon=0}
ight) + \int_{\phi_n} \left(d\sigma^{
m Born} + d\sigma^{
m virt} + \int_{\phi_1} d\sigma^{
m A}
ight)|_{arepsilon=0}$$

where $d\sigma^{A}$ a substraction term with the following properties:

• $d\sigma^{A}$ cancels soft & collinear divergences of $d\sigma^{real}$ • $\int_{\phi_1} d\sigma^{A}$ done (partially) analytically in *d* dimensions $\Rightarrow I, P, K$ operators

The calculation has been done with Catani-Seymour dipoles, cross-checked with phase-space slicing method [Catani, Seymour, Nucl.Phys. B485 (1997); Baur, Keller, Wackeroth, Phys.Rev. D59, 013002 (1999)]

Overview of the calculation

EW corrections and photons

• What value for α in EW corrections? use G_{μ} scheme:

$$\alpha = \frac{\sqrt{2}G_F M_W^2}{\pi} \left(1 - \frac{M_W^2}{M_Z^2}\right)$$

Charge renormalization constant shifted: $\delta Z_e \rightarrow \delta Z_e|_{G_\mu} = \delta Z_e|_{\alpha(0)} - \frac{1}{2}\delta r$ \Rightarrow EW corrections independent of light quark masses

When physical photon in external state: $\alpha(0)$ has to be used!

- \Rightarrow rescale all contributions by $(\alpha(0)/\alpha)^i$ $(i = 3 \text{ for } \gamma\gamma, \text{ otherwise } i = 1)$
- Spin correlation: in $q\gamma \rightarrow WWq$ real correction some diagrams include $\gamma\gamma$ contribution \Rightarrow spin correlation between the subprocess $\gamma\gamma \rightarrow WW$ and the initial quark/antiquark to be taken into account

Overview of the calculation

Parameter set and uncertainties

Parameter set:

- α in the G_{μ} -scheme, $\alpha(0)^{-1} = 137.036$ for $\alpha/\alpha(0)$ rescaling
- $\alpha_s^{\text{NLO}}(M_Z^2) = 0.12018^{+0.00317}_{-0.00386}$ (90% CL) (MSTW2008) or $\alpha_s(M_Z^2) = 0.1190$ (MRST2004QED)
- $\alpha_s^{\text{NNLO}}(M_Z^2) = 0.11707^{+0.00340}_{-0.00340}$ (90% CL) used at NNLO for $gg \rightarrow WW, ZZ$ subprocesses (with MSTW2008)
- $M_t = 173.5 \text{ GeV}, M_W = 80.385 \pm 0.015 \text{ GeV}, M_Z = 91.1876 \pm 0.0021 \text{ GeV}, M_H = 125 \text{ GeV}$
- Full NLO QCD+EW total cross section: $\delta^{EW} = \sigma^{\text{NLO QCD}+EW} / \sigma^{\text{NLO QCD}}$ (calculated with MRST2004QED) and $\sigma^{\text{tot,MSTW}} = \delta^{EW} \times \sigma^{\text{NLO QCD,MSTW}}$

Uncertainties on total cross sections:

- Scale uncertainty: calculated with $\frac{1}{2}\mu_0 \le \mu_R = \mu_F \le 2\mu_0$, $\mu_0 = M_{V_1} + M_{V_2}$ as central scale
- **PDF**+ α_s **uncertainty:** use MSTW2008 PDF set with correlated PDF+ α_s 90%CL uncertainties
- **Parametric uncertainties:** impact of the experimental errors on M_W and M_Z

Overview of the calculation

QCD distributions at 14 TeV

NLO QCD effects (no cuts):

• Large QCD effect at high p_T driven by leading-logarithmic term $\alpha_s \log^2$

gluon-induced processes [see also Frixione et al., Nucl.Phys. B383, 3 (1992); Frixione, Nucl.Phys. B410, 280 (1993); Ohnemus, Phys.Rev. D50, 1931 (1994)]

Differential distributions and radiative corrections hierarchy

QCD distributions at 14 TeV

NLO QCD effects (no cuts):

• Large QCD effect at high p_T driven by leading-logarithmic term $\alpha_s \log^2$

 $\left(\frac{M_W^2}{p_T^2}\right)$ in

gluon-induced processes [see also Frixione et al., Nucl.Phys. B383, 3 (1992); Frixione, Nucl.Phys. B410, 280 (1993); Ohnemus, Phys.Rev. D50, 1931 (1994)]

 Radiative correction hierarchy: WZ > WW > ZZ because of non-abelian structure, coupling strengths and PDFs (PDF(u) > PDF(d)):

$$\frac{d\Delta^{\rm QCD} \rm NLO}{\rm LO} : 120\% \simeq \delta_{ZZ}^{\rm QCD} \simeq \frac{1}{3} \delta_{WW}^{\rm QCD} \simeq \frac{1}{6} \delta_{W-Z}^{\rm QCD} (\text{full})$$
$$\delta_{ZZ}^{\rm QCD} \simeq \frac{1}{4} \delta_{WW}^{\rm QCD} \simeq \frac{1}{12} \delta_{W-Z}^{\rm QCD} (\text{leading-log})$$

Differential distributions and radiative corrections hierarchy

EW distributions at 14 TeV

NLO EW effects (no cuts, illustrated here in WW channel):

• Sudakov factor in the $q\bar{q} \rightarrow VV'$ correction $\propto \alpha \log^2$

• γ -induced processes compensate this Sudakov effect $\Leftarrow t$ -channel massive boson exchange diagram in WW and WZ channels \Rightarrow big hierarchy in EW corrections

$$\frac{d\Delta^{\rm EW} {\rm NLO}}{{\rm LO}} : 0.3\% \simeq \delta_{ZZ}^{\rm EW} \simeq \frac{1}{90} \delta_{WW}^{\rm EW} \simeq \frac{1}{190} \delta_{W-Z}^{\rm EW}$$
$$d\sigma^{u\gamma \to W^+ W^- u} \simeq \left(\frac{a_W^4}{4c_{L,u}^2} d\sigma_L^{u\gamma \to Zu} + \frac{a_W^2}{4} d\sigma_L^{u\gamma \to W^+ d} + \frac{1}{4} d\sigma_{LT}^{uW_\gamma^+ \to W^+ u}\right) \frac{\alpha}{2\pi} \log^2 \left[\frac{(p_T^{W^+})^2}{M_W^2}\right]$$

• $\gamma \gamma$ dominates in M_{WW} distribution

Differential distributions and radiative corrections hierarchy

Experimental results summary

Up-to-date results since HEP-EPS 2013:

• $pp \rightarrow ZZ$:

Experiment	7 TeV	8 TeV
ATLAS	$6.7^{+0.9}_{-0.8}~{ m pb}$	$7.1^{+0.6}_{-0.5} \text{ pb}$
CMS	$6.24^{+0.96}_{-0.87}~{ m pb}$	$7.7\pm0.8~\mathrm{pb}$

• $pp \rightarrow W^+Z + W^-Z$:

Experiment	7 TeV	8 TeV
ATLAS	$19.0^{+1.7}_{-1.6} \text{ pb}$	$20.3^{+1.6}_{-1.4} \mathrm{pb}$
CMS	$20.8\pm1.8~\mathrm{pb}$	$24.7\pm1.7~\text{pb}$

• $pp \rightarrow WW$:

Experiment	7 TeV	8 TeV
ATLAS	$51.9\pm4.8~\mathrm{pb}$	/
CMS	$52.4\pm5.1~\mathrm{pb}$	$69.9\pm7.0~\mathrm{pb}$

[ATLAS Collaboration, Eur.Phys.J. C72, 2173 (2012); arXiv:1210.2979; JHEP 1303 (2013) 128; ATLAS-CONF-2013-020; ATLAS-CONF-2013-021] [CMS Collaboration, CMS-PAS-SMP-12-005; Phys.Lett. B721, 190 (2013); JHEP 1301, 063 (2013)]

Total cross sections and experimental data

Experimental results summary

How to obtain the total cross section?

► Extrapolate to the full phase space, $\sigma^{\text{tot}} = \frac{\sigma^{\text{fid}}}{BR(VV' \to X) \times \mathcal{A}_{\text{geometry}}}$

where X is the final state measured:

e.g. for ZZ it is
$$X = 4\ell$$
, for WW it is $X = \ell\ell'\nu\nu'$

 $\mathcal{A}_{\text{geometry}}$ rescaling factor to extrapolate to the full phase space, estimated from MC predictions: $\mathcal{A}_{\text{geometry}} = \frac{\sigma^{\text{fid,cut}}}{\sigma^{\text{tot,cut}}}$

Total cross sections and experimental data

ZZ total cross section

- **EW correction factor:** NLO EW corrections negative and sizeable, $\delta^{\text{EW}} = 0.97$
- Parametric uncertainties negligible (< 0.1%)
- Scale uncertainty: $\Delta^{\mu} = +3.2\%/-2.4\%$ @ 7 TeV down to +1.2%/-0.8% @ 33 TeV
- **PDF**+ α_s uncertainty: use 90% CL MSTW2008 PDF set, +4.2%/ 3.5% @ 7 TeV down to $\pm 3.9\%$ @ 33 TeV

Total cross sections and experimental data

ZZ total cross section

Total uncertainty and comparison with experiment: $\sigma_{ZZ} = 5.95^{+0.45}_{-0.35}$ pb @ 7 TeV $\sigma_{ZZ} = 7.3^{+0.5}_{-0.4}$ pb @ 8 TeV $\sigma(\mathbf{pp} \to \mathbf{ZZ}) \ [\mathbf{pb}]$ 50NLO QCD+EW, $\mu_0 = 2M_Z$ 40 30 Λ^{tot} ATLAS 1.320CMS 1.21.110 1.00.915 25 337 10 15202530 33 \sqrt{s} [TeV]

ATLAS @ 7 TeV: agree within 0.8σ CMS @ 7 TeV: perfect agreement (< 0.3σ)

ATLAS @ 8 TeV: perfect agreement ($< 0.3\sigma$) CMS @ 8 TeV: agree within 0.4σ

Total cross sections and experimental data

WZ total cross section

- **EW correction factor:** NLO EW corrections negligible, $\delta^{EW} = 1.00$
- Parametric uncertainties negligible (< 0.1%)
- Scale uncertainty (W⁺/W⁻Z): $\Delta^{\mu} = +4.6\%/-3.6\%$ @ 7 TeV down to +1.2%/-1.0% @ 33 TeV
- PDF+ α_s uncertainty (W⁺/W⁻Z): use 90% CL MSTW2008 PDF set, +4.3%/ 4.0% @ 7 TeV down to +3.9%/ 3.7% @ 33 TeV

WZ total cross section

 $\label{eq:constrainty} \begin{array}{l} \mbox{Total uncertainty on } W^+Z + W^-Z \mbox{ production cross section} \\ \mbox{ and comparison with experiment:} \end{array}$

 $\sigma_{W^-Z+W^+Z} = 18.3^{+2.3}_{-1.9} \text{ pb } @ 7 \text{ TeV} \qquad \sigma_{W^-Z+W^+Z} = 22.7^{+2.7}_{-2.3} \text{ pb } @ 8 \text{ TeV}$

ATLAS @ 7 TeV: perfect agreement ($< 0.2\sigma$) CMS @ 7 TeV: agreement within 0.85σ ATLAS @ 8 TeV: agree within 0.85σ CMS @ 8 TeV: agreement within 0.6σ

Total cross sections and experimental data

WW total cross section

- EW correction factor: NLO EW corrections positive and small, $\delta^{\text{EW}} = 1.01 1.02^{\text{KeV}}$ (same when calculated with the newest NNPDF 2.3 QED set [NNPDF Collaboration, arXiv:1308.0598])
- Parametric uncertainties negligible
- Scale uncertainty: $\Delta^{\mu} = +3.2\%/-2.4\%$ @ 7 TeV down to +0.5%/-0.3% @ 33 TeV
- PDF+ α_s uncertainty: use 90% CL MSTW2008 PDF set, +4.2%/ 3.3% @ 7 TeV down to $\pm 3.9\%$ @ 33 TeV

Total cross sections and experimental data

Total uncertainty and comparison with experiment: $\sigma_{WW} = 45.7^{+3.4}_{-2.6}$ pb @ 7 TeV $\sigma_{WW} = 55.6^{+4.0}_{-3.1}$ pb @ 8 TeV

ATLAS & CMS @ 7 TeV: 1.1σ excess

CMS @ 8 TeV: 1.8σ excess

Summary and outlook

Diboson production at the LHC:

- Status of the calculation: On-shell WW/WZ/ZZ production cross sections known fully at NLO (EW+QCD)
- Radiative corrections hierarchy: gluon/photon-induced processes driven by double-logarithmic terms

 \Rightarrow first comprehensive explanation why WZ > WW > ZZ thanks to non-abelian gauge structure, coupling strengths and PDF effects

 γ -induced processes further enhanced by *t*-channel massive gauge boson exchange

- **EW effects:** γ -induced processes compensate or even overcompensate the virtual Sudakov effect in *WW* and *WZ* p_T distributions
- Uncertainty on total cross sections: +7%/-6% @ 7–8 TeV, +5%/-4% @ 33 TeV
- Comparison with experimental results: WZ and ZZ total cross sections predictions agree very well with experiment WW total cross section at $1\sigma @ 7$ TeV and $1.8\sigma @ 8$ TeV (as a side-point: single-top interference is negligible in WW production)

Conclusion and outlook

Thank you!

Leading-logarithmic approximation vs full result

- Leading-logarithmic approximation: off by up to a factor of two at $p_T \simeq 700$ GeV (WW QCD case)
- But still converges at very high p_T
- Approximation works better in the EW case than in the QCD case, almost perfect for EW WW distribution

EW leading-log equations for ZZ, WW and WZ

• $ZZ p_T$ distribution

$$d\sigma^{q\gamma \to ZZq} = c_{ZZ}^{q} d\sigma_{L}^{q\gamma \to Zq} \frac{\alpha}{2\pi} \log^{2} \left[\frac{(p_{T}^{Z})^{2}}{M_{Z}^{2}} \right]$$

• $WW p_T$ distribution

$$\begin{split} d\sigma^{u\gamma \to W^+W^-u} &= \left(\frac{a_W^4}{4c_{L,u}^2} d\sigma_L^{u\gamma \to Zu} + \frac{a_W^2}{4} d\sigma_L^{u\gamma \to W^+d} + \frac{1}{4} d\sigma_{LT}^{uW_\gamma^+ \to W^+u}\right) \frac{\alpha}{2\pi} \log^2 \left[\frac{(p_T^{W^+})^2}{M_W^2}\right] \\ d\sigma^{d\gamma \to W^+W^-d} &= \left(\frac{a_W^4}{4c_{L,d}^2} d\sigma_L^{d\gamma \to Zd} + \frac{a_W^2}{4} d\sigma_L^{u\gamma \to W^+d} + \frac{1}{4} d\sigma_{LT}^{dW_\gamma^+ \to W^+d}\right) \frac{\alpha}{2\pi} \log^2 \left[\frac{(p_T^{W^+})^2}{M_W^2}\right] \end{split}$$

• $WZ p_T$ distribution

$$d\sigma^{u\gamma \to W^{+}Zd} = \frac{c_{L,u}^{2}c_{WZ}^{W}}{a_{W}^{2}}d\sigma_{L}^{u\gamma \to W^{+}d}\frac{\alpha}{2\pi}\log^{2}\left[\frac{(p_{T}^{W^{+}})^{2}}{M_{Z}^{2}}\right]$$
$$d\sigma^{d\gamma \to W^{-}Zu} = \frac{c_{L,d}^{2}c_{WZ}^{d}}{a_{W}^{2}}d\sigma_{L}^{d\gamma \to W^{-}u}\frac{\alpha}{2\pi}\log^{2}\left[\frac{(p_{T}^{W^{-}})^{2}}{M_{Z}^{2}}\right]$$
with $a_{W} = \frac{1}{\sqrt{2}\sin\theta_{W}}$, $c_{L,f} = (I_{3}^{f} - \sin^{2}\theta_{W}Q_{f})/(\sin\theta_{W}\cos\theta_{W})$, $c_{R,f} = -Q_{f}\sin\theta_{W}/\cos\theta_{W}$,
 $c_{ZZ}^{u} = (c_{L,u}^{4} + c_{R,u}^{4})/(4c_{L,u}^{2}) = 0.18$, $c_{ZZ}^{d} = (c_{L,d}^{4} + c_{R,d}^{4})/(4c_{L,u}^{2}) = 0.26$,
 $c_{WZ}^{d} = \frac{1}{2}a_{W}^{2}\frac{c_{L,u}}{c_{L,d}}\left(1 + \frac{\cot\theta_{W}}{c_{L,d}} - \frac{\cot\theta_{W}}{c_{L,u}}\right) = 2.81$, $c_{WZ}^{u} = \frac{1}{2}a_{W}^{2}\frac{c_{L,d}}{c_{L,u}}\left(1 + \frac{\cot\theta_{W}}{c_{L,u}} - \frac{\cot\theta_{W}}{c_{L,u}}\right) = 4.13$

Backup