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1. Introduction

When Blanchard and Schneider first considered the e↵ect of
gravitational lensing on the cosmic microwave background
(CMB) anisotropies in 1987, they wrote with guarded optimism
that although “such an observation is far from present possibil-
ities [...] such an e↵ect will not be impossible to find and to
identify in the future.” (Blanchard & Schneider 1987). In the
proceeding years, and with the emergence of the concordance
⇤CDM cosmology, a standard theoretical picture has emerged,
in which the large-scale, linear structures of the Universe which
intercede between ourselves and the CMB last-scattering sur-
face induce small but coherent (Cole & Efstathiou 1989) de-
flections of the observed CMB temperature and polarisation
anisotropies, with a typical magnitude of 20. These deflec-
tions blur the acoustic peaks (Seljak 1996), generate small-scale
power (Linder 1990; Metcalf & Silk 1997), non-Gaussianity
(Bernardeau 1997), and convert a portion of the dominant E-
mode polarisation to B-mode (Zaldarriaga & Seljak 1998).
Gravitational lensing of the CMB is both a nuisance, in that it
obscures the primordial fluctuations (Knox & Song 2002), as
well as a potentially useful source of information; the charac-
teristic signatures of lensing provide a measure of the distri-
bution of mass in the Universe at intermediate redshifts (typi-
cally 0.1 < z < 5). In the⇤CDM framework, there exist accurate
methods to calculate the e↵ects of lensing on the CMB power
spectra (Challinor & Lewis 2005), as well as optimal estimators
for the distinct statistical signatures of lensing (Hu & Okamoto
2002; Hirata & Seljak 2003a).

In recent years there have been a number of increasingly sen-
sitive experimental measurements of CMB lensing. Lensing has
been measured in the data of the WMAP satellite both in cross-
correlation with large-scale-structure probed by galaxy surveys
(Hirata et al. 2004; Smith et al. 2007; Hirata et al. 2008; Feng
et al. 2012a), as well as internally at lower signal-to-noise (Smidt
et al. 2011; Feng et al. 2012b). The current generation of low-
noise, high-resolution ground-based experiments has done even
better; the Atacama Cosmology Telescope (ACT) has provided
an internal detection of lensing at 4.6� (Das et al. 2011, 2013),
and the South Pole Telescope detects lensing at 6� in the tem-
perature power spectrum, and 6.3� from a direct reconstruction
of the lensing potential (Keisler et al. 2011; van Engelen et al.
2012). Significant measurements of the correlation between the
reconstructed lensing potential and other tracers of large-scale
structure have also been observed (Bleem et al. 2012; Sherwin
et al. 2012).

Planck enters this field with unique full-sky, multi-frequency
coverage. Nominal map noise levels for the first data release (ap-
proximately 105, 45, and 60 µK arcmin for the three CMB chan-
nels at 100, 143, and 217 GHz respectively) are approximately
five times lower than those of WMAP (or twenty five times lower
in power), and the Planck beams (approximately 100, 70 and 50
at 100, 143 and 217 GHz), are small enough to probe the 2.04
deflections typical of lensing. Full sky coverage is particularly
beneficial for the statistical analysis of lensing e↵ects, as much
of the “noise” in temperature lens reconstruction comes from
CMB fluctuations themselves, which can only be beaten down
by averaging over many modes.

Lensing performs a remapping of the CMB fluctuations,
such that the observed temperature anisotropy in direction n̂
is given in terms of the unlensed, “primordial” temperature

anisotropy as (e.g. Lewis & Challinor 2006)

T (n̂) = T unl(n̂+ r�(n̂)),

= T unl(n̂) +
X

i

ri�(n̂)riT (n̂) + O(�2), (1)

where �(n̂) is the CMB lensing potential, defined by

�(n̂) = �2
Z �⇤

0
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fK(�⇤) fK(�)
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Here � is conformal distance (with �⇤ ⇡ 14000 Mpc) denoting
the distance to the CMB last-scattering surface) and  (�n̂, ⌘)
is the gravitational potential at conformal distance � along the
direction n̂ at conformal time ⌘ (the conformal time today is de-
noted as ⌘0). The angular-diameter distance fK(�) depends on
the curvature of the Universe, and is given by

fK(�) =

8>>>><
>>>>:

K�1/2 sin(K1/2�) for K > 0 (closed),
� for K = 0 (flat),
|K|�1/2 sinh(|K|1/2�) for K < 0 (open).

(3)

The lensing potential is a measure of the integrated mass distri-
bution back to the last-scattering surface. It contains information
on both the gravitational potentials  To first order, its e↵ect on
the CMB is to introduce a correlation between the lensed tem-
perature and the gradient of the unlensed temperature, a property
which can be exploited to make a (noisy) reconstruction of the
lensing potential itself.

In Fig. 1 we plot the noise power spectrum N��L for recon-
struction of the lensing potential using the three Planck frequen-
cies which are most sensitive to the CMB anisotropies on the
arcminute angular scales at which lensing e↵ects become ap-
parent. The angular size of the Planck beams (50 FWHM and
greater) does not allow a high signal-to-noise (S/N) reconstruc-
tion of the lensing potential for any individual mode (our high-
est S/N ratio on an individual mode is approximately 2/3 for the
143 and 217 GHz channels, or 3/4 for a minimum-variance com-
bination of both channels), however with full-sky coverage the
large number of modes which are probed provides considerable
statistical power. To provide a feeling for the statistical weight of
di↵erent regions of the lensing measurement, in Fig. 2 we plot
(forecasted) contributions to the total detection significance for
the potential power spectrum C��L as a function of lensing mul-
tipole L. In addition to the power spectrum of the lensing po-
tential, there is tremendous statistical power in cross-correlation
of the Planck lensing potential with other tracers of the matter
distribution. In Fig. 2 we also plot forecasted S/N contributions
for several representative tracers.

This paper describes the production, characterization, and
first science results for two Planck-derived lensing products:

(I) A map of the CMB lensing potential �(n̂) over a large
fraction of the sky (approximately 70%). This repre-
sents an integrated measure of mass in the entire visible
Universe, with a peak sensitivity to redshifts of z ⇠ 2.
At the resolution of Planck, this map provides an esti-
mate of the lensing potential down to angular scales of
50 at L = 2048, corresponding to structures on the order
of 3 Mpc in size at z = 2.

(II) An estimate of the lensing potential power spec-
trum C��L and an associated likelihood, which is
used in the cosmological parameter analysis of
Planck Collaboration XVI (2013). Our likelihood is
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Fig. 2. The power spectrum of the deflection angle (given in terms of the lensing potential " by ∇") for a concordance #CDM model. The linear
theory spectrum (solid) is compared with the same model including non-linear corrections (dashed) from HALOFIT [65].
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Fig. 3. Cumulative contribution of different redshifts to the power spectrum of the lensing potential for a concordance #CDM model. Note we have
used a log scale for C

"
l in the left-hand plot, but linear in the right-hand plot.

where the primordial power spectrum is PR(k). Given some primordial power spectrum this can be computed easily
numerically using Boltzmann codes such as CAMB [66].8 Since it is deflection angles that are physically relevant, it
is usual to plot the power spectrum of the deflection angle ∇" given by l(l + 1)C

"
l , as shown for a typical model in

Fig. 2. Note that for l!1 the Bessel functions go to zero at the origin, jl(k$) → 0 as $ → 0, so the l!1 power
spectrum is finite and well defined.

The last scattering surface is a long way away, so the lensing potential has contributions out to quite high redshift as
show in Fig. 3. Nearby low redshift potentials only contribute to the large-scale lensing, so the spectrum is only quite

8 http://camb.info

Lewis & Challinor, 2006
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now has su�cient signal-to-noise that shot noise of the NVSS
quasar catalogue is the limiting source of noise in the cross-
correlation.

The majority of this paper is dedicated to the production and
testing of the Planck lensing map and power spectrum estimate.
Our focus here is on extracting the non-Gaussian signatures of
lensing, although we note that lensing e↵ects are also apparent
at high significance (10�) as a smoothing e↵ect in the Planck
temperature power spectra (Planck Collaboration XV 2013). We
begin in Sect. 2, where we describe and motivate our method-
ology for producing unbiased estimates of the lensing potential
and its power spectrum. The Planck maps and data cuts that are
used for this purpose are described in Sect. 3, and the simulations
that we use to characterize our reconstruction and its uncertain-
ties are described in Sect. 4. In Sect. 5 we give an overview of
our error budget, and discuss the various sources of systematic
and statistical uncertainty for our lensing estimates. In Sect. 6
we present our main results: the first Planck lensing map and
a corresponding estimate of the lensing potential power spec-
trum. The likelihood based on this power spectrum is combined
with the likelihood for the temperature anisotropy power spec-
trum (Planck Collaboration XV 2013) to derive parameter con-
straints in Planck Collaboration XVI (2013). In Sect. 6.1 we
highlight a subset of parameter results where the information
provided by the lensing likelihood has proven particularly use-
ful. In the concordance ⇤CDM cosmology, there is believed to
be a correlation between the CMB lensing potential and the low-
` temperature anisotropies, driven by the e↵ects of dark energy.
We also present a measurement of this correlation in Sect. 6.2.
Finally, we connect our lensing potential map to other tracers of
large-scale structure with several illustrative cross-correlations
using galaxy, quasar, cluster and infrared source catalogues in
Sect. 6.3. These main results are followed in Sect. 7 by a large
suite of systematic and consistency tests, where we perform null
tests against a variety of di↵erent data cuts and processing. We
conclude in Sect. 8. A series of appendices provide further de-
tails on some technical aspects of our methodology and lensing
potential estimates.

Throughout this paper, when we refer to the concordance or
fiducial ⇤CDM cosmology we are referring to a model with
baryon density !b = ⌦bh2 = 0.0480, cold dark matter den-
sity !c = ⌦ch2 = 0.1199, density parameter for the cos-
mological constant ⌦⇤ = 0.6910, Hubble parameter H0 =
100h km s�1 Mpc�1 with h = 0.6778, spectral index of the power
spectrum of the primordial curvature perturbation ns = 0.96, am-
plitude of the primordial power spectrum (at k = 0.05 Mpc�1)
As = 2.21 ⇥ 10�9, and Thomson optical depth through reion-
ization ⌧ = 0.093. These values were determined from a pre-
publication analysis of the Planck temperature power spectrum,
but are consistent with the best-fit values quoted in Planck
Collaboration XVI (2013).

2. Methodology

In this section, we detail our methodology for reconstructing
the lensing potential and estimating its angular power spectrum.
These are both accomplished by exploiting the distinctive statis-
tical properties of the lensed CMB.

(I) If we consider a fixed lensing potential applied to multi-
ple realizations of the CMB temperature anisotropies, then
lensing introduces statistical anisotropy into the observed
CMB; the fluctuations are still Gaussian, however the co-
variance varies as a function of position and orientation

on the sky. We use this idea to obtain a (noisy) estimate of
�(n̂). The noise of this map is a combination of instrumen-
tal noise and statistical noise due to the fact that we only
have a single realization of the CMB to observe, analo-
gous to shape noise in galaxy lensing.

(II) If we consider averaging over realizations of both the lens-
ing potential and the CMB fluctuations, then lensing intro-
duces non-Gaussianity into the observed CMB. This ap-
pears at lowest order in the connected part of the CMB
4-point function, or trispectrum†. We use this to measure
the lensing power spectrum C��L .

The estimators that we use are derived from maximizing the like-
lihood function of the lensed CMB under the hypotheses above,
and should be optimal (in the minimum-variance sense). In cases
where we have made suboptimal choices, we provide estimates
of the loss of signal-to-noise.

2.1. Lens reconstruction

To gain intuition for the process of lens reconstruction, it is use-
ful to consider the e↵ect of lensing on a small patch of the sky.
Lensing remaps the temperature fluctuations by a deflection field
r�(n̂). The part of r�(n̂) that is constant over our patch is not
an observable e↵ect; it describes only a re-centering of the map.
The variation of the deflection field across the patch is observ-
able, however. This can be usefully decomposed into conver-
gence () and shear modes (�+, ��) as

� rirj�(n̂) =
"
 + �+ ��
��  � �+

#
(n̂). (4)

If we observe a patch that is small enough that these quan-
tities can be taken as constant, then the observational con-
sequences are simple. The convergence mode causes a local
change of scale, either magnifying or demagnifying the fluctu-
ations. Taking the local power spectrum of our small patch, we
would find that the CMB peaks would shift to larger or smaller
scales, relative to the full-sky average. The shear modes also de-
scribe changes of scale, however they are now orientation depen-
dent. On a small patch, convergence and shear estimators can be
constructed from local estimates of the (orientation-dependent)
power spectrum and then stitched together to recover the lensing
potential � (Zaldarriaga & Seljak 1998; Bucher et al. 2012). This
procedure describes a quadratic estimator for the local conver-
gence and shear.

From the description above, it is not immediately clear how
to go about stitching together estimates of convergence and shear
in di↵erent regions of the sky, or what weight to give the local
power spectrum estimates as a function of scale. These questions
can be resolved by considering a generic form for the quadratic
estimator, and optimizing its weight function for sensitivity to
lensing (Okamoto & Hu 2003). To first order in the lensing po-
tential, the statistical anisotropy introduced by lensing appears
as an o↵-diagonal contribution to the covariance matrix of the
CMB:

�hT`1m1 T`2m2i =
X

LM

X

`1m1,`2m2

(�1)M
 
`1 `2 L
m1 m2 �M

!
W�`1`2L�LM ,

(5)

† The ISW-lensing correlation also introduces a non-zero bispectrum.
When correlating the reconstructed �(n̂) with the large-angle tempera-
ture anisotropies in Sect. 6.2, we are probing this bispectrum.
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where the average hi is taken over CMB realizations with a fixed
lensing potential. Here the bracketed term is a Wigner 3 j sym-
bol, �LM =

R
d2 n̂Y⇤LM(n̂)�(n̂) is the harmonic transform of the

lensing potential, and the weight function W�`1`2L is given by

W�`1`2L = �
r

(2`1 + 1)(2`2 + 1)(2L + 1)
4⇡

p
L(L + 1)`1(`1 + 1)

⇥CTT
`1

 
1 + (�1)`1+`2+L

2

!  
`1 `2 L
1 0 �1

!
+ (`1 $ `2). (6)

Here CTT
` is the theoretical power spectrum of the lensed CMB.

Note that we use the lensed power spectrum here, rather than
the unlensed spectrum that is sometimes used in the literature,
as this is accurate to higher order in � (Lewis et al. 2011), an
improvement which is necessary at Planck sensitivity (Hanson
et al. 2011).

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as
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where Rx� is a normalization matrix, and x̄LM is a quadratic
“building block” which takes in a pair of filtered sky maps T̄ (1)

`m
and T̄ (2)

`m , and sums over their empirical covariance matrix with a
weight function W x
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The “mean-field” term x̄MF
LM accounts for all known sources of

statistical anisotropy in the map, which could otherwise bias the
lensing estimate. It is given by
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where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may
be maximized with respect to the lensing potential modes �LM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use �̄, with
weight function given by Eq. 6). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogo-
nal to certain systematic e↵ects (Namikawa et al. 2012a).
This is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C�1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
is combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use di↵erent pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the �LM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate �̄ = x̄ � x̄MF is equiv-
alent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by

T̄`m ⇡
h
CTT
` +CNN

`

i�1
T`m ⌘ F`T`m, (10)

where CTT
` is the temperature power spectrum and CNN

` is the
power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
e↵ects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
estimator normalization is given by
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This can be read as “the response of estimator x to lensing on
scale L”. The filter functions F` are those used for T̄ (1) and T̄ (2)

respectively. In cases where the filter functions are obvious, we
will drop the indices above.

Putting all of the above together, for a chosen quadratic esti-
mator x̄ we obtain normalized, mean-field-debiased estimates of
the lensing potential � as
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where the average hi is taken over CMB realizations with a fixed
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Here CTT
` is the theoretical power spectrum of the lensed CMB.

Note that we use the lensed power spectrum here, rather than
the unlensed spectrum that is sometimes used in the literature,
as this is accurate to higher order in � (Lewis et al. 2011), an
improvement which is necessary at Planck sensitivity (Hanson
et al. 2011).

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as
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The “mean-field” term x̄MF
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where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may
be maximized with respect to the lensing potential modes �LM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use �̄, with
weight function given by Eq. 6). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogo-
nal to certain systematic e↵ects (Namikawa et al. 2012a).
This is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C�1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
is combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use di↵erent pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the �LM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate �̄ = x̄ � x̄MF is equiv-
alent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by
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where CTT
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` is the
power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
e↵ects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
estimator normalization is given by
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Fig. 1. Sky-averaged lens reconstruction noise levels for the 100,
143, and 217 GHz Planck channels (red, green, and blue solid,
respectively), as well as for experiments that are cosmic-variance
limited to a maximum multipole `max = 1000, 1500, and 1750
(upper to lower solid grey lines). A fiducial ⇤CDM lensing po-
tential using best-fit parameters to the temperature power spec-
trum from Planck Collaboration XVI (2013) is shown in dashed
black. The noise level for a minimum-variance (“MV”) combi-
nation of 143+217 GHz is shown in black (the gain from adding
100 GHz is negligible).

Fig. 2. Overview of forecasted contributions to the detection sig-
nificance as a function of lensing multipole L for the C��L power
spectrum (solid black), as well as for several other mass tracers,
at the noise levels of our MV lens reconstruction. Our measure-
ment of the power spectrum C��L is presented in Sect. 6, The
ISW-� correlation believed to be induced by dark energy is stud-
ied in Sect. 6.2. The NVSS-� correlation is studied (along with
other Galaxy correlations) in Sect. 6.3. The CIB-� prediction
(dashed cyan) uses the linear SSED model of Hall et al. (2010),
assuming no noise or foreground contamination. A full analy-
sis and interpretation of the CIB-� correlation is performed in
Planck Collaboration XVIII (2013).

based on the lensing multipole range 40  L  400.
This multipole range (highlighted as a dark grey band
in Fig. 2), was chosen as the range in which Planck
has the greatest sensitivity to lensing power, encap-
sulating over 90% of the anticipated signal-to-noise,
while conservatively avoiding the low-L multipoles
where mean-field corrections due to survey anisotropy
(discussed in Appendix C) are large, and the high-L
multipoles where there are large corrections to the power
spectra from Gaussian (disconnected) noise bias. Distilled
to a single amplitude, our likelihood corresponds to a
4% measurement of the amplitude of the fiducial ⇤CDM
lensing power spectrum, or a 2% measurement of the
amplitude of the matter fluctuations (neglecting parameter
degeneracies).

Our e↵orts to validate these products are aided by the fre-
quency coverage of the three Planck channels that we employ,
which span a wide range of foreground, beam, and noise prop-
erties. For the mask levels that we use, the root-mean-squared
(RMS) foreground contamination predicted by the Planck sky
model (Delabrouille et al. 2012) has an amplitude of 14, 22,
and 70 µK at 100, 143, and 217 GHz, which can be compared
to a CMB RMS for the Planck best-fitting ⇤CDM power spec-
trum of approximately 110 µK. The dominant foreground com-
ponent at all three CMB frequencies is dust emission, both from
our Galaxy as well as the cosmic infrared background (CIB),
although at 100 GHz free-free emission is thought to consti-
tute approximately 15% of the foreground RMS. Contamination
from the thermal Sunyaev-Zeldovich (tSZ) e↵ect is a potential
worry at 100 and 143 GHz, but negligible at 217 GHz (Sunyaev
& Zeldovich 1980). On the instrumental side, these frequency
channels also span a wide range of beam asymmetry, with typi-
cal ellipticities of 19%, 4%, and 18% at 100, 143, and 217 GHz.
The magnitude of correlated noise on small scales (due to de-
convolution of the bolometer time response) also varies signifi-
cantly. The ratio of the noise power (before beam deconvolution)
at ` = 1500 to that at ` = 500 is a factor of 1.5, 1.1, and 1.0 at
100, 143, and 217 GHz. The agreement of lens reconstructions
based on combinations of these three channels allows a powerful
suite of consistency tests for both foreground and instrumental
biases. We will further validate the robustness of our result to
foreground contamination using the component separated maps
from the Planck consortium (Planck Collaboration XII 2013).

At face value, the 4% measurement of C��L in our fiducial
likelihood corresponds to a 25� detection of gravitational lens-
ing e↵ects. In fact, a significant fraction (approximately 25% of
our error bar) is due to sample variance of the lenses themselves,
and so the actual “detection” of lensing e↵ects (under the null
hypothesis of no lensing) is significantly higher. We have also
been conservative in terms of mask and multipole range in the
construction of our fiducial lensing likelihood. As we will show
in Sect. 7.1, we obtain consistent results on sky fractions larger
than our fiducial 70% sky mask.

The Planck lensing potential is part of a significant shift for
CMB lensing science from the detection regime to that of preci-
sion cosmological probe. The NVSS quasar catalogue, for exam-
ple, has been a focus of previous lensing cross-correlation stud-
ies with WMAP (Hirata et al. 2004; Smith et al. 2007; Hirata
et al. 2008), where evidence for cross-correlation was found at
approximately 3.5�. As we will see in Sect. 6.3, the significance
for this correlation with Planck is now 20�. Notably, this is less
than the significance with which lensing may be detected inter-
nally with Planck. The lensing potential measured by Planck
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Our motivation for taking a fixed noise level is that with this ap-
proach, in regions su�ciently far from the mask boundary, our
filter asymptotes to the diagonal form of Eq. (B.1). This means
that the normalization of our lensing estimates can be well-
approximated analytically, which is very useful for the propa-
gation of systematic e↵ects, and also that the normalization of
our lensing estimates does not vary across the sky with noise
level, which simplifies cross-correlation analysis. Our C�1 fil-
ter is therefore optimally accounting for masking e↵ects, but not
for noise correlations and inhomogeneity. We estimate the sub-
optimality of neglecting these noise properties by calculating the
quantity
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where Fopt

` is the optimal filter and Fuse

` is the suboptimal filter
which we have actually used. This equation gives the S/N loss
as a function of lens multipole L, however in practice we find
that the L dependence is small enough that it su�ces to quote a
single average loss. To estimate the degradation due to ignoring
noise correlations we set

Fopt

` =
1

CTT
` + B�2,⌫

` NTT
L

, (B.9)

where NTT
L is the power spectrum of the map noise. We find

that the degradation due to neglect of noise correlations is small;
less than 2% for all L  2048 at 100 GHz, and less than 0.1%
at 143 and 217 GHz. To calculate the degradation due to ignor-
ing noise inhomogeneity, we determine the map noise level in
the 3072 regions corresponding to Nside = 16 HEALPix pix-
els, take Fopt

` using Eq. (B.2) with the local noise level, and
estimate a resulting S/N degradation using Eq. (B.8). The ne-
glect of noise inhomogeneity is the dominant suboptimality of
our filtering, although it is still small. We find an average S/N
loss (averaged over the entire sky) of approximately 4% at 100,
143, and 217 GHz, consistent with the simulation-based results
of Hanson et al. (2009). We take this loss as justified, given the
simpler normalization properties of our lensing estimates when
neglecting variations in the map noise level.

Appendix C: Mean-Fields

As discussed in Sect. 2, the quadratic lensing estimators which
we use are designed to detect statistical anisotropy induced by
lensing. There are a number of non-lensing sources of statistical
anisotropy which can mimic the lensing signal to some extent.
In our analysis, the e↵ects we consider are

(1) The application of a sky mask, which introduces sharp gra-
dients that may be misinterpreted as lensing.

(2) Noise inhomogeneity, which causes the overall power to
fluctuate across the sky and can resemble the convergence
component of lensing.

(3) Beam asymmetry, which smears the fluctuations more along
one direction than another and can mimic the shear compo-
nent of lensing.

(4) Pixelization, in which detector samples are accumulated into
pixels, introduces a spurious deflection field on the pixel
scale because the centroid of the hit distribution in each pixel
does not necessarily lie at the pixel center.

In our analysis, we account for most of these e↵ects with a cor-
rective mean-field term, given by Eq. (9), which is determined
using Monte Carlo simulations. In this appendix, we will break
this mean-field down into its constituent parts and discuss each
in more detail. As an overview of the results in this section,
in Fig. C.1 we plot estimate for the three largest mean-fields,
due to masking, noise inhomogeneity, and beam asymmetry at
143 GHz (100 and 217 GHz are qualitatively similar). These
mean-fields all have most of their contributions on very large
scales, dictated by the coherency of the scan strategy in the case
of beam asymmetry and noise inhomogeneity, and of the large-
scale nature of the Galactic foregrounds in the case of the sky
mask.

143 GHz

Fig. C.1. Analytical estimates for the power spectra of the largest
low-L mean-fields 143 GHz. The various components are dis-
cussed in more detail in Sect. C.1 (mask), Sect. C.2 (noise), and
Sect. C.3 (beams). The mean-fields all couple most strongly to
even modes of the lens reconstruction, due to the approximate
north/south symmetry of the scan strategy and Galactic mask.

Our discussion will focus on constructing simple models for
each source of mean-field. Following Hanson et al. (2010), we
will identify each of the individual contributions to mean-field
with a tracer zLM that sources a contribution to the CMB covari-
ance matrix given by

�hT`1m2 T ⇤`2m2
i =

X

LM

zLM(�1)M
 
`1 `2 L
m1 m2 M

!
Wz
`1`2L, (C.1)

where Wz
`1`2L is a weight function describing how zLM couples

multipoles. Such a contaminant leads to a bias for the standard
lensing estimator �̂LM given by

�̂MF
LM =

R�zLM

R��L
zLM , (C.2)

where the response function R�zL is defined in Eq. (12). The ana-
lytical forms for the mean-fields which we present here are used
in Sect. 7.4 to construct “bias hardened” estimators which have
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Table 4. Statistics of spatial distribution of e↵ective beam parameters:
FWHM, ellipticity and beam solid angle

FWHMa ⌦
Band [arcmin] Ellipticity [arcmin2]

30 . . . . . . 32.239 ± 0.013 1.320 ± 0.031 1189.51 ± 0.84
44 . . . . . . 27.01 ± 0.55 1.034 ± 0.033 833 ± 32
70 . . . . . . 13.252 ± 0.033 1.223 ± 0.026 200.7 ± 1.0
100 . . . . . 9.651 ± 0.014 1.186 ± 0.023 105.778 ± 0.311
143 . . . . . 7.248 ± 0.015 1.036 ± 0.009 59.954 ± 0.246
217 . . . . . 4.990 ± 0.025 1.177 ± 0.030 28.447 ± 0.271
353 . . . . . 4.818 ± 0.024 1.147 ± 0.028 26.714 ± 0.250
545 . . . . . 4.682 ± 0.044 1.161 ± 0.036 26.535 ± 0.339
857 . . . . . 4.325 ± 0.055 1.393 ± 0.076 24.244 ± 0.193
a Mean of best-fit Gaussians to the e↵ective beams.

maps are of course constructed from many detectors that sample
each pixel at di↵erent angles. Therefore the scanning beams do
not represent well the point spread function at map level. Instead,
“e↵ective beams” are computed for each pixel and frequency us-
ing the FEBeCoP algorithm (Mitra et al. 2011).
FEBeCoP calculates the e↵ective beam at a position in the

sky by computing the real space average of the scanning beam
over all observed crossing angles at that sky position. Table 4
summarizes the distribution across the sky of a set of parame-
ters representing the beams, and Fig. 8 shows, in the 100 GHz
case, their variation across the sky. We note that the e↵ective
beams include pixelization e↵ects (essentially the HEALpix pix-
elization window function). The e↵ective beam window function
for LFI is calculated by FEBeCoP using an ensemble of signal-
only simulations convolved with the e↵ective beams. For HFI,
the quickbeam harmonic space e↵ective beam code (Planck
Collaboration VII 2013) is used to calculate the e↵ective beam
window function given the scan history and the scanning beam.

To estimate the uncertainty of the e↵ective beams, the en-
semble of allowed LFI GRASP models (Sect. 5.4) was propa-
gated through FEBeCoP and used to determine window function
errors. For HFI, quickbeam is used to propagate an ensemble
of simulated Mars observations to harmonic space, constructing
e↵ective beam window function errors. The total uncertainties in
the e↵ective beam window function (in B2

` units) at ` = 600 are
2 % at 30 GHz and 1.5 % at 44 GHz. At ` = 100 they are 0.7 %,
0.5 %, 0.2 %, and 0.2 % for 70, 100, 143, and 217 GHz respec-
tively (Planck Collaboration IV 2013; Planck Collaboration VII
2013).

6.2. Mapmaking

6.2.1. LFI

The calibrated TOI of each LFI radiometer are used as input
to the Madam mapmaking code (Keihänen et al. 2010) together
with the corresponding pointing data, in the form of the Euler
angles (✓, �, ). Madam implements a polarized destriping ap-
proach to mapmaking; the noise is modelled as white noise
plus a set of o↵sets, or baselines. The algorithm estimates in
a maximum-likelihood fashion the amplitudes of the baselines,
subtracts them from the actual TOI, and then simply bins the
result into a map. The output consists of pixelized maps of the
three Stokes parameters (T , Q, U). The LFI temperature maps
being released at this time are shown as the first three maps in
Fig. 9.

Fig. 8. This figure shows the distribution across the sky of the solid
angle (top) and ellipticity of the e↵ective beams at 100 GHz. The distri-
bution is typical for all channels.

One of the key parameters in the Madam algorithm is the
baseline length that represents the time scale at which the base-
line approximation of low-frequency noise is applied. We choose
baseline lengths corresponding to an integer number of samples
(33, 47, and 79 at 30, 44, and 70 GHz respectively) such that
the total integration time over the baseline corresponds approx-
imately to one second. This selection is based on a compromise
between computational load and map quality, and we find that
shortening the baselines below one second has practically no ef-
fect on the residual noise.

In order to create maps in the maximum-likelihood ap-
proach, the noise covariance matrix of the problem has to be
specified. In general, we use a white noise covariance matrix.
The pipeline allows the use of di↵erent user-defined weighting
schemes. The maps being released are made using the horn-
uniform weighting scheme with

C�1
w =

2
�2

M + �
2
S
, (1)

where �M and �S are the white noise sensitivities of the Main
and Side radiometers of a given horn, and these radiometers are
weighted equally.
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Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 15. Spatial distribution of the noise RMS on a color scale of 25 µK
for the SMICA CMB map. It has been estimated from the noise map
obtained by running SMICA through the half-ring maps and taking the
half-di↵erence. The average noise RMS is 17 µK. SMICA does not
produce CMB values in the blanked pixels. They are replaced by a con-
strained Gaussian realization.

for bandpowers at ` < 50, using the cleanest 87 % of the sky. We
supplement this ‘low-`’ temperature likelihood with the pixel-
based polarization likelihood at large-scales (` < 23) from the
WMAP 9-year data release (Bennett et al. 2012). These need to
be corrected for the dust contamination, for which we use the
WMAP procedure. However, we have checked that switching
to a correction based on the 353 GHz Planck polarization data,
the parameters extracted from the likelihood are changed by less
than 1�.

At smaller scales, 50 < ` < 2500, we compute the power
spectra of the multi-frequency Planck temperature maps, and
their associated covariance matrices, using the 100, 143, and

Fig. 16. Angular spectra for the SMICA CMB products, evaluated over
the confidence mask, and after removing the beam window function:
spectrum of the CMB map (dark blue), spectrum of the noise in that
map from the half-rings (magenta), their di↵erence (grey) and a binned
version of it (red).

217 GHz channels, and cross-spectra between these channels11.
Given the limited frequency range used in this part of the analy-
sis, the Galaxy is more conservatively masked to avoid contam-
ination by Galactic dust, retaining 58 % of the sky at 100 GHz,
and 37 % at 143 and 217 GHz.

11 interband calibration uncertainties have been estimated by compar-
ing directly the cross spectra and found to be within 2.4 and 3.4⇥10�3

respectively for 100 and 217 GHz with respect to 143 GHz
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Table 2. Area of sky retained by combining di↵use foreground
and point source masks, once apodised.

Mask Sky fraction Sky area
[%] [deg2]

CL31 . . . . . . . . . 30.71 12 668
CL39 . . . . . . . . . 39.32 16 223
CL49 . . . . . . . . . 48.77 20 121

Figure 2. The set of masks (CL31, CL39, CL49) used for the
likelihood analyses.

absence of point source holes, this precision can be achieved
with sharp, non-apodised Galactic masks (Efstathiou 2004).
However, the inclusion of point source holes introduces non-
negligible low-` power leakage, which in turn can generate
errors of a few percent in the covariance matrices. We re-
duce this leakage by apodising the di↵use Galactic masks (see
Appendix B for details). The point source mask is based on the
union of the point sources detected between 100 and 353 GHz,
and is also apodized. The point source flux cut is not critical,
since the amplitudes of the Poisson contributions of unresolved
sources are allowed to vary over a wide range in the likelihood
analysis. Thus, we do not impose tight priors from source counts
and other CMB experiments on the Poisson amplitudes. A set of
the combined Galactic and point source masks, referred to as

‘CLx’, where ‘x’ is the percentage of sky retained, are shown in
Fig. 2.

3.2. Galactic emission

The contamination from di↵use Galactic emission at low to in-
termediate multipoles can be reduced to low levels compared to
CMB anisotropies by a suitable choice of masking. However,
even with conservative masking, the remaining Galactic emis-
sion at high multipoles is non-negligible compared to other un-
resolved components, such as the Cosmic Infrared Background
(CIB) anisotropies at 143 and 217 GHz. A clear way of demon-
strating this is by di↵erencing the power spectra computed with
di↵erent masks, thereby highlighting the di↵erences between
the isotropic and non-isotropic unresolved components. Figure 3
shows (up to `  1400) the 217 GHz power spectrum di↵erence
for the mask1 and mask0 masks3, minus the corresponding dif-
ference for the 143 GHz frequency channel. Any isotropic con-
tribution to the power spectrum (CMB, unresolved extragalactic
sources, etc.) will cancel in such a double di↵erence, leaving a
non-isotropic signal of Galactic origin, free of the CMB induced
cosmic variance scatter. Above ` > 1400, Fig. 3 shows the mask
di↵erenced 217 GHz power spectrum, as the instrumental noise
becomes significant at ` & 1400 for the 143 GHz channel.

In the same figure, these di↵erence spectra are compared to
the unbinned mask-di↵erenced 857 GHz power spectrum, scaled
to 217 GHz adopting a multiplicative factor4 of (9.93 ⇥ 10�5)2;
the dotted line shows a smooth fit to the unbinned spectrum.
The agreement between this prediction and the actual dust emis-
sion at 217 GHz is excellent, and this demonstrates conclusively
the existence of a small-scale dust emission component with an
amplitude of ⇠ 5 � 15 µK2 at 217 GHz if mask1 is used.

For cosmological parameter analysis this small-scale dust
component must be taken into account, and several approaches
may be considered:

1. Fit to a template shape, e.g., as shown by the dotted line in
Fig. 3.

2. Reduce the amplitude by further masking of the sky.
3. Attempt a component separation by using higher frequen-

cies.

The main disadvantage of the third approach is a potential
signal-to-noise penalty, depending on which frequencies are
used, as well as confusion with other unresolved foregrounds.
This is particularly problematic with regards to the CIB, which
has a spectrum very similar to that of Galactic dust. In the fol-
lowing we therefore adopt the two former solutions.

It is important to understand the nature of the small scale dust
emission, and, as far as possible, to disentangle this emission
from the CIB contribution at the HFI cosmological frequencies.
We use the 857 GHz power spectrum for this purpose, noting
that the dust emission at 857 GHz is so intense that this partic-
ular map provides an e↵ectively noise-free dust emission map.
In Fig. 4 we again show the 857 GHz mask power spectrum dif-
ference, but this time plotted on a log-log scale. The solid line
shows the corresponding best-fit model defined by

D` = A (100/`)↵

[1 + (`/`c)2]�/2
, (9)

3 These are the combination of the non-apodised Galactic masks G35
and G22 with the apodised point source mask PSA82.

4 The scaling coe�cient for the 143 GHz spectrum is (3.14 ⇥ 10�5)2,
derived from the 7-parameter fitting function of Eq. A.46.
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where the average hi is taken over CMB realizations with a fixed
lensing potential. Here the bracketed term is a Wigner 3 j sym-
bol, �LM =

R
d2 n̂Y⇤LM(n̂)�(n̂) is the harmonic transform of the

lensing potential, and the weight function W�`1`2L is given by

W�`1`2L = �
r

(2`1 + 1)(2`2 + 1)(2L + 1)
4⇡

p
L(L + 1)`1(`1 + 1)

⇥CTT
`1

 
1 + (�1)`1+`2+L

2

!  
`1 `2 L
1 0 �1

!
+ (`1 $ `2). (6)

Here CTT
` is the theoretical power spectrum of the lensed CMB.

Note that we use the lensed power spectrum here, rather than
the unlensed spectrum that is sometimes used in the literature,
as this is accurate to higher order in � (Lewis et al. 2011), an
improvement which is necessary at Planck sensitivity (Hanson
et al. 2011).

Now we construct a quadratic estimator to search for the co-
variance which is introduced by lensing. We will use several dif-
ferent estimators for the lensing potential, as well as to probe
possible point source contamination, and so it will be useful to
keep this discussion as general as possible. A completely generic
quadratic estimator for the lensing potential can be written as

�̂x
LM =

X

L0M0

h
Rx�

i�1

LM,L0M0

h
x̄L0M0 � x̄MF

L0M0
i
, (7)

where Rx� is a normalization matrix, and x̄LM is a quadratic
“building block” which takes in a pair of filtered sky maps T̄ (1)

`m
and T̄ (2)

`m , and sums over their empirical covariance matrix with a
weight function W x

`1`2L:
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!
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The “mean-field” term x̄MF
LM accounts for all known sources of

statistical anisotropy in the map, which could otherwise bias the
lensing estimate. It is given by

x̄MF
LM =

1
2

X
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where the ensemble average here is taken over realizations of the
CMB and noise.

We may now optimize the generic quadratic estimator above.
If the primordial CMB fluctuations and instrumental noise are
Gaussian and the lensing potential is fixed, then the likelihood
for the observed CMB fluctuations is still a Gaussian, which may
be maximized with respect to the lensing potential modes �LM
(Hirata & Seljak 2003a). The optimal quadratic estimator is the
first step of an iterative maximization of this likelihood, and it
has been shown that additional iterations of the estimator are not
necessary for temperature lens reconstruction (Hirata & Seljak
2003a; Okamoto & Hu 2003). The optimal quadratic estimator
has the following choices for the weight function and filtering.

(I) The weight function W x should be a matched filter for the
covariance induced by lensing (i.e., one should use �̄, with
weight function given by Eq. 6). We shall use this weight
function for all of our fiducial results, although for consis-
tency tests we will also use “bias-hardened” estimators,
which have weight functions constructed to be orthogo-
nal to certain systematic e↵ects (Namikawa et al. 2012a).
This is discussed further in Sect. 7.4.

(II) The filtered temperature multipoles T̄`m should be given
by T̄`m = (C�1T )`m, where T is a beam-deconvolved sky
map and C is its total signal+noise covariance matrix. We
describe our approximate implementation of this filtering
in Appendix B. When combining multiple frequencies for
our minimum-variance estimator, all of the available data
is combined into a single map which is then filtered and
used for both input multipoles of the quadratic estimator.
It can be desirable to use di↵erent pairs of maps however,
and we use this for several consistency tests. For exam-
ple, we feed maps with independent noise realizations into
the quadratic estimator to avoid possible noise biases in
Sect. 7.3.

In the quadratic maximum-likelihood estimator, the mean-field
correction emerges from the determinant term in the likelihood
function, and it can be seen that the normalization matrix R is
the Fisher matrix for the �LM; this means that the normalization
is the same as the covariance matrix of the lens reconstruction,
and so the unnormalized lensing estimate �̄ = x̄ � x̄MF is equiv-
alent to an inverse-variance-weighted lens reconstruction, which
is precisely the quantity needed for most statistical analysis. This
is why we have denoted it with an overbar, in analogy to T̄ .

We choose to treat the map noise as if it were homogeneous
when constructing the filtered T̄`m, and do not account for vari-
ation with hit count across the sky. This is a slightly suboptimal
filtering choice; in Appendix. B we estimate that it leads to a
5% loss of total signal-to-noise when constraining the power
spectrum of the lensing potential. The advantage of this ap-
proach, however, is that far from the mask boundaries our fil-
tering asymptotes to a simple form, given by

T̄`m ⇡
h
CTT
` +CNN

`

i�1
T`m ⌘ F`T`m, (10)

where CTT
` is the temperature power spectrum and CNN

` is the
power spectrum of the homogeneous noise level that we use in
our filtering. For the purposes of compact notation, in the fol-
lowing equations we combine both of these elements in the “fil-
ter function” F`. The asymptotic form of our filtering, Eq. (10),
will prove useful, as it means that the normalization of our esti-
mator, as well as its variance and response to various systematic
e↵ects, may be accurately modelled analytically. It allows us to
propagate uncertainties in the beam transfer function and CMB
power spectrum, for example, directly to our lens reconstruction.
This filtering choice also means that the normalization does not
vary as a function of position on the sky, which simplifies the
analysis of cross-correlations between the lensing potential map
and external tracers. Under the approximation of Eq. (10), the
estimator normalization is given by

Rx�
LM,L0M0 = �LL0�MM0Rx�

L , (11)

where the response function Rx�
L for filtered maps T̄ (1) and T̄ (2)

is
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1
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W x
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`1
F(2)
`2
. (12)

This can be read as “the response of estimator x to lensing on
scale L”. The filter functions F` are those used for T̄ (1) and T̄ (2)

respectively. In cases where the filter functions are obvious, we
will drop the indices above.

Putting all of the above together, for a chosen quadratic esti-
mator x̄ we obtain normalized, mean-field-debiased estimates of
the lensing potential � as

�̂x
LM =

1
Rx�

L

⇣
x̄LM � x̄MF

LM

⌘
. (13)
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- Take two temperature maps and inverse-variance filter them

- Multiply one by the temperature power spectrum and differentiate it

- Multiply it with the first filtered map

- Take the difference and normalize to get unbiased estimator
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- Do the same on a set of realistic simulations
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As a visual illustration, and a preview of our data results in
Sect. 6, in Fig. 4, we show a simulated lens reconstruction as
well as the input � map, which gives a visual impression of the
signal-to-noise in our lens reconstruction.

Fig. 3. Validation of our estimator normalization for simulations
of the MV reconstruction at the map and power spectrum levels.
The map normalization (plotted as �̂�in) is tested by taking the
cross-spectrum of the input � with the reconstruction averaged
over Monte Carlo simulations, divided by an fsky factor to ac-
count for missing power in the mask. The power spectrum nor-
malization (plotted as �̂�̂) is obtained by averaging the first line
of Eq. (15) over simulations, and then comparing it to the ex-
pected value, which is C��L + �C��L

���
N1

because our simulations
do not contain point source non-Gaussianity.

Sim

�WF(n̂)

Input

Fig. 4. Simulation of the Wiener-filtered lensing potential esti-
mate �WF

LM ⌘ C��L (�̄LM � �̄MF
LM ) for the MV reconstruction (left),

and the input � realization (right; filtered by C��L R��L to be di-
rectly comparable to the Wiener estimate). Both maps show the
southern Galactic sky in orthographic projection. The lensing
reconstruction on the data is noise dominated on all scales, how-
ever correlations between the two maps can still be seen visually.

5. Error budget

In this section, we describe the measurement and systematic er-
ror budget for our estimation of the lensing potential power spec-
trum. This is broken down into three sections; in Sect. 5.1 we
describe our measurement (or “statistical”) error bars, which are
due to the fact that we have only a single noisy sky with a finite
number of modes to observe. In Sect. 5.2 we consider uncer-
tainty in the instrumental beam transfer function, which we will
see propagates to a normalization uncertainty for our lensing es-
timates. Finally, in Sect. 5.3 we discuss the e↵ect of cosmolog-
ical uncertainty; possible errors in the fiducial model for CTT

`
result in a normalization uncertainty for our lensing estimates,
and uncertainties in the fiducial C��L power spectrum lead to un-
certainties in the N(1)

L correction. As a guide to the relative size
and scale dependence of these terms, in Fig. 5 we summarize the
error budget for our fiducial minimum-variance lens reconstruc-
tion, based on 143 and 217 GHz. Individual frequency bands, as
well as 100 GHz are qualitatively similar.

5.1. Measurement

Although our measurement uncertainties are ultimately assigned
by Monte Carlo, we can use the analytical expression of Eq. (21)
to gain intuition for how they are sourced by various compo-
nents. Our simple model of the sky after masking and dust clean-
ing is that it consists of three uncorrelated signals: CMB, instru-
mental noise, and unresolved foreground power. The noise vari-
ance of the lens reconstruction in Eq. (21) involves two power
spectra, and so we can think of the noise contribution as the
sum of six possible terms involving pairs of the CMB, noise, and
foreground power spectra. In Fig. 6 we combine these contribu-
tions into three representative contributions to the reconstruction
noise: “pure CMB” in which both spectra are due to CMB fluc-
tuations; the “noise” contribution in which either both spectra
are those for noise power, or one is noise and one is CMB; and,
finally, the “foreground” contribution in which either one or both
of the spectra are due to unresolved foreground power. We can
see that for most reconstruction multipoles, the pure CMB con-
tribution constitutes the largest part of the reconstruction noise,
followed by noise. The unresolved foreground power is a fairly
small contribution to our measurement error. Note that the dom-
inant terms for both the “noise” and “foreground” contributions
are the ones in which one of the spectra is a CMB fluctuation.
For this reason, we will focus less on the use of cross-spectra to
avoid noise biases than is done for the usual CMB power spec-
tra (Planck Collaboration XV 2013), although we will perform
consistency tests using cross-spectra of data to avoid noise bi-
ases. Note that our realization-dependent method for removing
the disconnected noise bias (Eq. 17) means that the majority of
this contribution is estimated directly from the data itself, re-
ducing our sensitivity to uncertainty in the noise and foreground
power.

5.2. Beam transfer function

Errors in the e↵ective beam transfer function appear as an error
in the normalization of our lensing estimates. For simplicity here
we will describe the case for a single standard quadratic lensing
estimator that uses the same map for both of its inputs, although
when dealing with combinations of channels for our actual re-
sults we account for di↵erences in the beam transfer function
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Lensing Multipole L

Angular Scale [deg.]

Fig. 10. Lensing potential power spectrum estimates based on the individual 100, 143, and 217 GHz sky maps, as well our fiducial
minimum-variance (MV) reconstruction which forms the basis for the Planck lensing likelihood. The black line is for the best-fit
⇤CDM model of Planck Collaboration XVI (2013).

perform additional cross-checks using these bins to ascertain
whether they would have any significant implications for cos-
mology.

In addition to the Planck power spectrum measurements, in
Fig. 11 we have overplotted the ACT and SPT measurements
of the lensing potential power spectrum (Das et al. 2013; van
Engelen et al. 2012). It is clear that all are very consistent.
The Planck measurement has the largest signal-to-noise of these
measurements; as we have already discussed the 40 < L < 400
lensing likelihood provides a 4% constraint on the amplitude of
the lensing potential power spectrum, while the constraint from
current ACT and SPT measurements are 32% and 16% respec-
tively. These measurements are nevertheless quite complemen-
tary. As a function of angular scale, the full-sky Planck power
spectrum estimate has the smallest uncertainty per multipole of
all three experiments at L < 500, at which point the additional
small-scale modes up to `max = 3000 used in the SPT lensing
analysis lead to smaller error bars. The good agreement in these
estimates of C��L is reassuring; in addition to the fact that the ex-
periments and analyses are completely independent, these mea-
surements are sourced from fairly independent angular scales
in the temperature map, with ` <⇠ 1600 in the case of Planck,
` < 2300 in the case of ACT, and ` < 3000 in the case of SPT.
Cross-correlation of the Planck lensing map with these indepen-
dent measures of the lensing potential will provide an additional
cross-check on their consistency, however at the power spectrum
level they are already in good agreement.

6.1. Parameters

Weak gravitational lensing of the CMB provides sensitivity
to cosmological parameters a↵ecting the late-time growth of
structure which are otherwise degenerate in the primary CMB

anisotropies imprinted around recombination. Examples include
the dark energy density in models with spatial curvature and the
mass of neutrinos that are light enough (m⌫ < 0.5 eV) still to
have been relativistic at recombination.

To connect our measurement of the lensing power spectrum
to parameters, we construct a lensing likelihood nominally based
on the multipole range 40  L  400, cut into eight equal-width
bins with �L = 45 to maintain parameter leverage from shape
information in addition to our overall amplitude constraint. In
Table 1 we present bandpowers for these eight bins using the in-
dividual 100, 143, and 217 GHz reconstructions as well as the
MV reconstruction which is the basis for our nominal likeli-
hood. The bandpower estimates and their uncertainties are bro-
ken down into constituent parts as discussed in Sect. 2. Based on
these bandpowers, we form a likelihood following Eq. (23). The
measurement errors on each bin are measured by Monte-Carlo
using 1000 simulations, and the bins are su�ciently wide that
we can neglect any small covariance between them (this is dis-
cussed further in Appendix D). We analytically marginalize over
uncertainties that are correlated between bins, including them in
the measurement covariance matrix. This includes beam transfer
function uncertainties (as described in Sect 5.2), uncertainties in
the point source correction (Sect. 7.2) and uncertainty in the N(1)

correction.
As the lensing likelihood is always used in conjunction with

the Planck TT power spectrum likelihood, we coherently ac-
count for uncertainty in CTT

` by renormalizing our lensing po-
tential measurement for each sample, as described in Sect. 5.3.

The lensing likelihood is combined with the main Planck
TT likelihood (Planck Collaboration XV 2013) – constructed
from the temperature (pseudo) cross-spectra between detec-
tor sets at intermediate and high multipoles, and an exact ap-
proach for Gaussian temperature anisotropies at low multipoles
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improve on this first full-sky map of the CMB lensing poten-
tial. As is illustrated in the simulated reconstruction of Fig. 4,
there will be clear visual correlations between this map and fu-
ture measurements.

In Fig. 10 we plot the power spectra of our individual 100,
143, and 217 GHz reconstructions as well as the minimum-
variance reconstruction. The agreement of all four spectra is
striking. Overall, our power spectrum measurement is reason-
ably consistent with the ⇤CDM prediction, given our measure-
ment error bars. Dividing the L 2 [1, 2048] multipole range into
bins of �L = 64 and binning uniformly in [L(L + 1)]2C��L , we
obtain a reduced �2 for the di↵erence between our power spec-
trum estimate and the model of 40.7 with 32 degrees of freedom.
The associated probability to exceed is 14%. On a detailed level,
there are some discrepancies between the shape and amplitude
of our power spectrum and the fiducial model however. Our like-
lihood is based on the multipole range 40  L  400, which
captures 90% of the available signal-to-noise for an amplitude
constraint on C��L . This range was chosen as the region of our
spectrum least likely to be contaminated by systematic e↵ects
(primarily uncertainties in the mean-field corrections at low-L,
and uncertainties in the Gaussian and point-source bias correc-
tions at high-L). Estimating an average amplitude for the fiducial
lensing power spectrum for a single bin over this multipole range
using Eq. (25) we find an amplitude of Â40!400 = 0.94 ± 0.04
relative to the fiducial model (which has A = 1). The power in
this region is consistent with the fiducial model, although 1.5�
low (the corresponding probability-to-exceed for the �2 of this
di↵erence is 15%). The low- and high-L extent of our likelihood
were deliberately chosen to have enough expected lensing signal
to enable a 10� detection of lensing on either side, bookending
our likelihood with two additional consistency tests. On the low-
L side, we have a good agreement with the expected power. As
will be discussed in Sect. 7.4, our measurement at L < 10 fails
some consistency tests at a level comparable to the expected sig-
nal. The L < 10 modes, which we suspect are somewhat con-
taminated by errors in the mean-field subtraction, are neverthe-
less consistent with the fiducial expectation, as can be seen in
Fig. 10; we measure Â1!10 = 0.44±0.54. Extending to the lower
limit of our likelihood, with a single bin from 10  L  40 we
measure Â10!40 = 1.02 ± 0.12. On the high-L side of our fidu-
cial likelihood, there is tension however. Extending from the fi-
nal likelihood multipole at L = 400 to the maximum multipole
of our reconstruction, we find Â400!2048 = 0.68 ± 0.13, which
is in tension with A = 1 at a level of just over 2.4�. The rel-
atively low power in our reconstruction is driven by a dip rel-
ative to the ⇤CDM model spectrum between 500 < L < 750,
as can be seen in Fig. 10. We show this feature more clearly
in the residual plot of Fig. 11. This deficit of power is in turn
driven by the 143 GHz data. For an estimate of the power spec-
trum using only 143 GHz, we measure Â143

400!2048 = 0.37 ± 0.18.
The 217 GHz reconstruction is more consistent with the model,
having Â217

400!2048 = 0.82 ± 0.17. These two measurements are
in tension; we have Â217�143

400!2048 = 0.45 ± 0.18, which is a 2.5�
discrepancy. The error bar on this di↵erence accounts for the ex-
pected correlation between the two channels due to the fact that
they see the same CMB sky. A larger set of consistency tests
will be presented in Sect. 7. We note for now that the bins from
40 < L < 400 used in our likelihood pass all consistency tests,
and show better agreement between 143 and 217 GHz. Although
L < 40 and L > 400 are not included in our nominal likelihood,
when discussing the use of the lensing likelihood for cosmo-
logical parameter constraints in the following section we will

�WF(n̂)

Galactic North

�WF(n̂)

Galactic South

Fig. 8. Wiener-filtered lensing potential estimate
�WF

LM ⌘ C��L (�̄LM � �̄MF
LM ) for our MV reconstruction, in Galactic

coordinates using orthographic projection. The reconstruction
is bandpass filtered to L 2 [10, 2048]. The Planck lens recon-
struction has S/N  1 for individual modes on all scales, so
this map is noise dominated. Comparison between simulations
of reconstructed and input � in Fig. 4 show the expected level
of visible correlation between our reconstruction and the true
lensing potential.

Galactic South - 143 GHz Galactic South - 217 GHz

Fig. 9. Wiener-filtered lensing potential estimates, as in Fig. 8,
for the individual 143 and 217 GHz maps.
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Frequency Combinations:

Mask Variation:

Component Separated Maps:

Bias-hardened Estimators:

Fig. 18. Summary of internal consistency tests between our fiducial minimum-variance (MV) reconstruction and a set of alternatives
designed to test sensitivity to potential issues. The top panel shows C��L estimates, with measurement error bars. The bottom panels
show the residual with respect to the MV reconstruction in units of the MV measurement uncertainty. The gray band marks the 1�
deviation uncertainty of the MV reconstruction. The error bar on each data point in the lower panels gives the standard deviation
of the scatter between each result and the MV, determined from Monte Carlo simulations which account for the correlated CMB,
noise and foreground power between estimators. Comparison of the uncertainty on the scatter points and the gray band gives an
indication of how constraining each test is. The various tests are described in more detail in subsections of Sect. 7.
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Fig. 21. Comparison of alternative lensing pipelines. The base-
line results use the methodology of Sect. 2. Boxes are for the
MV reconstruction, circles show the 143 GHz results, triangles,
the 217 GHz ones. The two bottom panels show di↵erences rel-
ative to the MV result for 143 and 217 GHz.

motivation in the development of each has been the reduction
of the sharp gradients induced when masking, which can induce
a mean-field several orders of magnitude larger than the lens-
ing signal at low multipoles (as discussed in Appendix C). Each
method takes a di↵erent approach to mitigating this mask e↵ect,
as discussed below:

(1) The method iso consists of applying the standard quadratic
lensing estimator to the sky map after multiplying by an
apodized Galactic mask, and filling point source holes us-
ing local constrained Gaussian realizations of the CMB sig-
nal+noise. The mask mean-field is proportional to the power
spectrum of the mask, and so as apodization smooths the
mask boundary (suppressing its power spectrum on small
scales), it correspondingly reduces the mean-field signifi-
cantly. The combination of apodization and source filling
makes this estimator very fast to apply to simulations but
does require an involved set of correction terms and fsky fac-
tors. Our implementation and calculation of this method is
described in detail in Benoit-Lévy et al. (2013).

(2) The metis method consists of inpainting the Galactic mask
as well as the point source holes, using the sparse-inpainting
algorithm described in (Abrial et al. (2007, 2008)). The re-
sulting map resembles a full-sky CMB map, and therefore
has no mask mean-field contribution. The inhomogeneous

noise and beam-induced mean-fields do still have to be cor-
rected however. Our implementation is based on that de-
scribed in Perotto et al. (2010), with several improvements.
In Perotto et al. (2010) lens reconstruction was performed on
the inpainted map and then analyzed on the full-sky, how-
ever further inspection has revealed that there are some spu-
rious features in the lens reconstruction, localized to the in-
painted region inside the Galactic mask. This is likely due to
the inhomogeneous noise in Planck that was ignored in pre-
vious work and cannot be well reproduced by the inpainter.
We therefore remask the full-sky lens reconstruction with
an apodized Galactic mask (as in Eq. 14) to remove these
regions from our analysis. We follow the same procedure
when evaluating the analytical expression for the �C��L

���
N0

bias, prewhitening and then applying an apodized Galactic
mask to the inpainted temperature multipoles to estimate
their power spectrum. Small residual biases are corrected us-
ing the same �C��L

���
MC

procedure used in the main method.
(3) The patches method avoids the Galactic mask completely

by cutting the sky into a collection of 410 small overlap-
ping 10� ⇥ 10� patches centered on the locations of Nside=8
HEALPix pixels, which are then analyzed under the flat-sky
approximation. Our implementation of this method is de-
scribed in Plaszczynski et al. (2012). As with the isomethod,
point source holes are filled using constrained Gaussian re-
alizations. The patches are extracted from a pre-whitened
CMB map, and apodized with a Kaiser-Bessel window func-
tion. The Fourier modes in each patch are fitted in real space
using a fast Fourier-Toeplitz algorithm. No mean-field cor-
rection is applied. Residual biases due to noise inhomogene-
ity are removed using a �C��L

���
MC

correction which is found
to be small. The patches method has been particularly useful
in the early stages of our analysis, to identify outliers caused
by unmasked point sources.

As can be seen in Fig. 21, all three of these methods are in good
agreement with the results of our baseline method, providing re-
assurance that our results are insensitive to the precise details of
our data filtering and reconstruction methodology.

8. Conclusions

The Planck maps have unprecedented sensitivity to gravitational
lensing e↵ects. We see significant and consistent measurements
of lensing for each of the high-resolution CMB channels at 100,
143 and 217 GHz. Even the noisiest channel which we have con-
sidered, 100 GHz, provides a 10� detection of lensing, which is
greater than all previous detections. Our fiducial lens reconstruc-
tion, based on a minimum-variance combination of the 143 and
217 GHz channels does even better, with a detection of lensing
(relative to the null hypothesis of no lensing) at a significance
of greater than 25�. Notably, the noise on our reconstruction is
low enough that it is no longer the limiting source of noise for
many correlations with large-scale structure catalogs (several ex-
amples of which we have given in Sect. 6.3). This marks a shift
for CMB lensing, from the detection regime into that of standard
cosmological probe. Our lensing potential map is publicly avail-
able, and we look forward to the uses which may be found for
it.

The percent-level Planck lensing potential measurement
pushes into the realm of precision cosmology, and requires care-
ful validation tests which we have performed in Sect. 7. Our
fiducial likelihood, based on the 40  L  400 range which is
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L

Fig. 11. Replotting of Fig. 10, removing 100 GHz for easier
comparison of 143 and 217 GHz. Also plotted are the SPT band-
powers from van Engelen et al. (2012), and the ACT bandpow-
ers from Das et al. (2013). All three experiments are very consis-
tent. The lower panel shows the di↵erence between the measured
bandpowers and the fiducial best-fit ⇤CDM model.

– in Planck Collaboration XVI (2013) to derive parameter con-
straints for the six-parameter ⇤CDM model and well-motivated
extensions. Lensing also a↵ects the power spectrum, or 2-point
function, of the CMB anisotropies, and this e↵ect is accounted
for routinely in all Planck results. On the angular scales rele-
vant for Planck, the main e↵ect is a smoothing of the acoustic
peaks and this is detected at around 10� in the Planck tempera-
ture power spectrum (Planck Collaboration XVI 2013). The in-
formation about C��L that is contained in the lensed temperature
power spectrum for multipoles ` <⇠ 3000 is limited to the ampli-
tude of a single eigenmode (Smith et al. 2006). In extensions of
⇤CDM with a single additional late-time parameter, lensing of
the power spectrum itself can therefore break the geometric de-
generacy (Stompor & Efstathiou 1999; Sherwin et al. 2011; van
Engelen et al. 2012; Planck Collaboration XVI 2013). As dis-
cussed in Appendix D and Schmittfull et al. (2013), cosmic vari-
ance of the lenses produces weak correlations between the CMB
2-point function and our estimates of C��L , but they are small
enough that ignoring the correlations in combining the two like-
lihoods should produce only sub-percent underestimates of the
errors in physical cosmological parameters.

In the following, we illustrate the additional constraining
power of our C��L measurements in ⇤CDM models and one-
parameter extensions, highlighting those results from Planck
Collaboration XVI (2013) where the lensing likelihood is influ-
ential.

6.1.1. Six-parameter ⇤CDM model

In the six-parameter ⇤CDM model, the matter densities, Hubble
constant and spectral index of the primordial curvature perturba-
tions are tightly constrained by the Planck temperature power
spectrum alone. However, in the absence of lensing the am-
plitude As of the primordial power spectrum and the reioniza-
tion optical depth ⌧ are degenerate, with only the combination
Ase�2⌧, which directly controls the amplitude of the anisotropy
power spectrum on intermediate and small scales being well de-
termined. This degeneracy is broken by large-angle polarization
since the power from scattering at reionization depends on the
combination As⌧2. In this first release of Planck data, we use
the WMAP nine-year polarization maps (Bennett et al. 2012) in
combination with Planck temperature data. With this data com-
bination, C��L is rather tightly constrained in the ⇤CDM model
(see Fig. 12) and the direct measurements reported here provide
a non-trivial consistency test of the model.

The eight C��L bandpowers used in the lensing likelihood are
compared to the expected spectrum in Fig. 12 (upper-left panel).
For the latter, we have used parameter values determined from
the main Planck likelihood in combination with WMAP polar-
ization (hereafter denoted WP) and small-scale power spectrum
measurements (hereafter highL) from ACT (Das et al. 2013) and
SPT (Reichardt et al. 2012)†. In this plot, we have renormalized
the measurements and their error bars (rather than the theory) us-
ing the best-fit model with a variant of the procedure described
in Sect. 5.3. Since the lensed temperature power spectrum in the
best-fit model is very close to that in the fiducial model used
to normalise the power spectrum estimates throughout this pa-
per, the power spectrum renormalisation factor (1 + �TT

L )2 of
Eq. (44) is less than 0.5% in magnitude. The predicted C��L in
the best-fit model di↵ers from the fiducial model by less than
2.5% for L < 1000. The best-fit model is a good fit to the mea-
surements, with �2 = 10.9 and the corresponding probability
to exceed equal to 21%. Significantly, we see that the ⇤CDM
model, calibrated with the CMB fluctuations imprinted around
z = 1100, correctly predicts the evolution of structure and geom-
etry at much lower redshifts. The 68% uncertainty in the ⇤CDM
prediction of C��L is shown by the dashed lines in the upper-left
panel of Fig. 12. We can assess consistency with the direct mea-
surements, properly accounting for this uncertainty, by introduc-
ing an additional parameter A��L that scales the theory C��L in the
lensing likelihood. (Note that we choose not to alter the lensing
e↵ect in CTT

` .) As reported in Planck Collaboration XVI (2013),
we find

A��L = 0.99 ± 0.05 (68%; Planck+lensing+WP+highL),

in excellent agreement with A��L = 1.
An alternative route to breaking the As-⌧ degeneracy is pos-

sible for the first time with Planck. Since C��L is directly propor-
tional to As, the lensing power spectrum measurements and the
smoothing e↵ect of lensing in CTT

` (which at leading order varies
as A2

s e�2⌧) can separately constrain As and ⌧ without large-angle
polarization data. The variation of C��L with ⌧ in ⇤CDM models

† As discussed in detail in Planck Collaboration XVI (2013), the pri-
mary role of the ACT and SPT data in these parameter fits is to constrain
more accurately the contribution of extragalactic foregrounds which
must be carefully modelled to interpret the Planck power spectra on
small scales. For ⇤CDM, the foreground parameters are su�ciently de-
coupled from the cosmological parameters that the inclusion of the ACT
and SPT data has very little e↵ect on the cosmological constraints.
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Fig. 13. Marginalised constraints on the optical depth in ⇤CDM
models from the Planck temperature power spectrum (Planck;
solid black), and additionally including the lensing likeli-
hood (Planck+lensing; dashed red) or WMAP polarization
(Planck+WP; dashed-dotted blue). We use a prior ⌧ > 0.01 in
all cases.

rameters by a small amount and the median values shift by rather
less than 1� for all parameters. The largest gain is for ⌦ch2 (and
H0) where the errors improve by 20%. Adding further large- and
small-scale data produces no significant reduction in error bars,
as expected. For most parameters, the medians also change very
little except for ⌦ch2 which is dragged low by a further 0.3� on
adding the small-scale lensing information. (The shift in H0 is
due to the anti-correlation between H0 and ⌦ch2 caused by the
acoustic-scale degeneracy in the temperature power spectrum;
see Planck Collaboration XVI 2013.) These findings are consis-
tent with the power spectrum amplitude measurements discussed
in Sect. 6: we can lower the lensing power by reducing the matter
density, and this is favoured by the lower amplitudes measured
from the small-scale lensing power spectrum.

The tension between the small-scale power and the power
over the L = 40–400 range included in our fiducial likelihood,
coupled with our lower confidence in the accuracy of the bias
removal on small scales, is the reason that we do not include
these smaller scales at this stage in the Planck lensing likelihood.

6.1.3. Spatial curvature and dark energy

Inflation models with su�cient number of e-folds of expansion
naturally predict that the Universe should be very close to be-
ing spatially flat. Constraining any departures from flatness is
therefore a critical test of inflationary cosmology. However, the
primary CMB anisotropies alone su↵er from a geometric degen-
eracy, whereby models with identical primordial power spec-
tra, physical matter densities and angular-diameter distance to
last-scattering have almost identical power spectra (Efstathiou
& Bond 1999). The degeneracy is partly broken by lens-
ing (Stompor & Efstathiou 1999), with small additional con-
tributions from the late-ISW e↵ect (on large scales) and by
projection e↵ects in curved models (Howlett et al. 2012). In
⇤CDM models with curvature, the geometric degeneracy is two-
dimensional, involving the curvature and dark energy density,
and this limits the precision with which either can be determined
from the CMB alone.
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Fig. 14. Marginalized posteriors for the six-parameter ⇤CDM
model, shown as box plots, for Planck+WP+highL with various
lensing likelihoods. The red and blue lines are the median and
mean, respectively. The box and bar correspond to 68% and 95%
of the probability density, both centered on the median. The left-
most column is without the lensing likelihood and the median
of these constraints is shown by the grey line. The remaining
columns show the e↵ect of adding in the fiducial lensing like-
lihood (second column), and further adding a low-L bin (third
column), high-L bins (fourth column) or both (final column).

With the high-significance detection of lensing by Planck
in the temperature power spectrum (Planck Collaboration XVI
2013), and via the lens reconstruction reported here, the geomet-
ric degeneracy is partially broken, as shown in Fig. 15. The long
tail of closed models with low dark energy density (and expan-
sion rate at low redshift) allowed by the geometric degeneracy
have too much lensing power to be consistent with Planck’s mea-
sured temperature and lensing power spectra (see also Fig. 12).
We find marginalised constraints on the curvature parameter of

⌦K = �0.042+0.027
�0.018 (68%; Planck+WP+highL)

⌦K = �0.0096+0.010
�0.0082 (68%; Planck+lensing+WP+highL),

so that lensing reconstruction reduces the uncertainty on ⌦K by
more than a factor of two over limits driven by the smoothing
e↵ect on the acoustic peaks of CTT

` . This improvement is consis-
tent with the spread in C��L in curved models constrained by the
temperature power spectrum, relative to the errors on the recon-
struction power spectrum; see Fig. 12. Note that the mean value
of ⌦K also moves towards zero with the inclusion of the C��L
measurements. Adding the high-L and low-L data to the likeli-
hood brings no more than a percent-level improvement on the
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021
WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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Fig. 15. Two views of the geometric degeneracy in curved ⇤CDM models which is partially broken by lensing. Left: the degeneracy
in the⌦m-⌦⇤ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95%
confidence regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ⌦K-H0
plane, with samples colour coded by ⌦⇤. Spatially-flat models lie along the grey dashed lines.

constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data:⌦K = �0.003+0.014

�0.018 (68%; Story
et al. 2012). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2013).

Lensing e↵ects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011). In curved⇤CDM models, we find marginalised con-
straints on ⌦⇤ of

⌦⇤ = 0.57+0.073
�0.055 (68%; Planck+WP+highL)

⌦⇤ = 0.67+0.027
�0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more than
a factor of two over those from the temperature power spectrum
alone.

6.1.4. Neutrino masses

The unique e↵ect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 and so suppress clus-
tering on scales larger than the horizon size at the non-relativistic
transition (Kaplinghat et al. 2003). This e↵ect reduces C��L for
L > 10 (see Fig. 12) and gives less smoothing of the acoustic
peaks in CTT

` . As discussed in Planck Collaboration XVI (2013),
the constraint on

P
m⌫ from the Planck temperature power spec-

trum (and WMAP low-` polarization) is driven by the smoothing
e↵ect of lensing:

P
m⌫ < 0.66 eV (95%; Planck+WP+highL).

Curiously, this constraint is weakened by additionally including
the lensing likelihood to

X
m⌫ < 0.85 eV, (95%; Planck+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-

trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2013) and are
thought to involve both the C��L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ⇤CDM+foreground model.
As regards C��L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

P
m⌫, and Fig. 12 reveals

a preference for high
P

m⌫ from this part of the spectrum. (We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact
on our neutrino mass constraints.) We also note that a similar
trend for lower lensing power than the ⇤CDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point, and we caution
over-interpreting the results. We expect to be able to say more
on this issue with the further data, including polarization, that
will be made available in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last scattering surface,
the gravitational potentials that they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time integrated Sachs-Wolfe (ISW) e↵ect, or the Rees-Sciama
(R-S) e↵ect depending on whether the evolution of the poten-
tials concerned is in the linear (ISW) or non-linear (R-S) regime
of structure formation (Sachs & Wolfe 1967; Rees & Sciama
1968). In the epoch of dark energy domination, which occurs af-
ter z ⇠ 0.5 for the concordance ⇤CDM cosmology, large-scale
potentials tend to decay over time as space expands, resulting
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Measurements of the temperature power spectrum can also
be used to constrain the amplitude of tensor modes. Although
such limits can appear to be much tighter than the limits from
B-mode measurements, it should be borne in mind that such lim-
its are indirect because they are derived within the context of a
particular theoretical model. In the rest of this subsection, we
will review temperature based limits on tensor modes and then
present the results from Planck.

Adding a tensor component to the base ⇤CDM model, the
WMAP 9-year results constrain r0.002 < 0.38 at 95% confidence
(Hinshaw et al. 2012). Including small-scale ACT and SPT data
this improves to r0.002 < 0.17, and to r0.002 < 0.12 with the
addition of BAO data. These limits are degraded substantially,
however, in models which allow running of the scalar spectral
index in addition to tensors. For such models, the WMAP data
give r0.002 < 0.50, and this limit is not significantly improved by
adding high resolution CMB and BAO data.

The precise determination of the fourth, fifth and sixth
acoustic peaks by Planck now largely breaks the degener-
acy between the primordial fluctuation parameters. For the
Planck+WP+highL likelihood we find

r0.002 < 0.11 (95%; no running), (64a)
r0.002 < 0.26 (95%; including running). (64b)

As shown in Figs. 21 and 23, the tensor amplitude is weakly cor-
related with the scalar spectral index; an increase in ns that could
match the first three peaks cannot fit the fourth and higher acous-
tic peak in the Planck spectrum. Likewise, the shape constraints
from the fourth and higher acoustic peaks give a reduction in
the correlations between a tensor mode and a running in the
spectral index, leading to significantly tighter limits than from
previous CMB experiments. These numbers in Eqs. (64a) and
(64b) are driven by the temperature spectrum and change very
little if we add non-CMB data such as BAO measurements. The
Planck limits are largely decoupled from assumptions about the
late-time evolution of the Universe and are close to the tightest
possible limits achievable from the temperature power spectrum
alone (Knox & Turner 1994; Knox 1995).

These limits on a tensor mode have profound implications
for inflationary cosmology. The limits translate directly to an up-
per limit on the energy scale of inflation,

V⇤ = (1.94 ⇥ 1016 GeV)4(r0.002/0.12) (65)

(Linde 1983; Lyth 1984), and to the parameters of “large-field”
inflation models. Slow-roll inflation driven by a power law po-
tential V(�) / �↵ o↵ers a simple example of large-field inflation.
The field values in such a model must necessarily exceed the
Planck scale mPl , and lead to a scalar spectral index and tensor
amplitude of

1 � ns ⇡ (↵ + 2)/2N, (66a)
r ⇡ 4↵/N, (66b)

where N is the number of e-foldings between the end of inflation
and the time that our present day Hubble scale crossed the infla-
tionary horizon (see e.g., Lyth & Riotto 1999). The 95% confi-
dence limits from the Planck data are now close to the predic-
tions of ↵ = 2 models for N ⇡ 50–60 e-folds (see Fig. 23).
Large-field models with quartic potentials (e.g., Linde 1982) are
now firmly excluded by CMB data. Planck constraints on power-
law and on broader classes of inflationary models are discussed
in detail in Planck Collaboration XXIV (2013). Improved lim-
its on B-modes will be required to further constrain high field
models of inflation.

6.2.3. Curvature

An explanation of the near flatness of our observed Universe
was one of the primary motivations for inflationary cosmology.
Inflationary models that allow a large number of e-foldings pre-
dict that our Universe should be very accurately spatially flat31.
Nevertheless, by introducing fine tunings it is possible to con-
struct inflation models with observationally interesting open ge-
ometries (e.g., Linde 1995; Bucher et al. 1995; Linde 1999) or
closed geometries (Linde 2003). Even more speculatively, there
has been interest in models with open geometries from consid-
erations of tunnelling events between metastable vacua within
a “string landscape” (Freivogel et al. 2006). Observational lim-
its on spatial curvature therefore o↵er important additional con-
straints on inflationary models and fundamental physics.

CMB temperature power spectrum measurements su↵er
from a well-known “geometrical degeneracy” (Bond et al. 1997;
Zaldarriaga et al. 1997). Models with identical primordial spec-
tra, physical matter densities and angular diameter distance to
the last scattering surface, will have almost identical CMB tem-
perature power spectra. This is a near perfect degeneracy (see
Fig. 25) and is broken only via the integrated Sachs-Wolfe (ISW)
e↵ect on large angular scales and gravitational lensing of the
CMB spectrum (Stompor & Efstathiou 1999). The geometrical
degeneracy can also be broken with the addition of probes of
late time physics, including BAO, Type Ia supernova, and mea-
surement of the Hubble constant (e.g., Spergel et al. 2007).

Recently, the detection of the gravitational lensing of the
CMB by ACT and SPT has been used to break the geomet-
rical degeneracy, by measuring the integrated matter potential
distribution. ACT constrained ⌦⇤ = 0.61 ± 0.29 (68% CL)
in Sherwin et al. (2011), with the updated analysis in Das et al.
(2013) giving ⌦K = �0.031 ± 0.026 (68% CL) (Sievers et al.
2013). The SPT lensing measurements combined with seven
year WMAP temperature spectrum improved this limit to ⌦K =
�0.0014 ± 0.017 (68 % CL) (van Engelen et al. 2012).

With Planck we detect gravitational lensing at
about 26� through the 4-point function (Sect. 5.1 and
Planck Collaboration XVII 2013). This strong detection of
gravitational lensing allows us to constrain the curvature to
percent level precision using observations of the CMB alone:

100⌦K = �4.2+4.3
�4.8 (95%; Planck+WP+highL); (67a)

100⌦K = �1.0+1.8
�1.9 (95%; Planck+lensing

+WP+highL). (67b)

These constraints are improved substantially by the addition
of BAO data. We then find

100⌦K = �0.05+0.65
�0.66 (95%; Planck+WP+highL+BAO), (68a)

100⌦K = �0.10+0.62
�0.65 (95%; Planck+lensing+WP

+highL+BAO). (68b)

These limits are consistent with (and slightly tighter than) the
results reported by Hinshaw et al. (2012) from combining the
nine-year WMAP data with high resolution CMB measurements
and BAO data. We find broadly similar results to Eqs. (68a) and
(68b) if the Riess et al. (2011) H0 measurement, or either of the
SNe compilations discussed in Sect. 5.4, are used in place of the
BAO measurements.

31The e↵ective curvature within our Hubble radius should then be of
the order of the amplitude of the curvature fluctuations generated during
inflation, ⌦K ⇠ O(10�5).
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Fig. 15. Two views of the geometric degeneracy in curved ⇤CDM models which is partially broken by lensing. Left: the degeneracy
in the⌦m-⌦⇤ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95%
confidence regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ⌦K-H0
plane, with samples colour coded by ⌦⇤. Spatially-flat models lie along the grey dashed lines.

constraint. We see that the CMB alone now constrains the ge-
ometry to be flat at the percent level. Previous constraints on
curvature via CMB lensing have been reported by SPT in com-
bination with the WMAP-7 data:⌦K = �0.003+0.014

�0.018 (68%; Story
et al. 2012). This constraint is consistent, though almost a factor
of two weaker, than that from Planck. Tighter constraints on cur-
vature result from combining the Planck data with other astro-
physical data, such as baryon acoustic oscillations, as discussed
in Planck Collaboration XVI (2013).

Lensing e↵ects provide evidence for dark energy from the
CMB alone, independent of other astrophysical data (Sherwin
et al. 2011). In curved⇤CDM models, we find marginalised con-
straints on ⌦⇤ of

⌦⇤ = 0.57+0.073
�0.055 (68%; Planck+WP+highL)

⌦⇤ = 0.67+0.027
�0.023 (68%; Planck+lensing+WP+highL).

Again, lensing reconstruction improves the errors by more than
a factor of two over those from the temperature power spectrum
alone.

6.1.4. Neutrino masses

The unique e↵ect in the unlensed temperature power spectrum
of massive neutrinos that are still relativistic at recombination
is small. With the angular scale of the acoustic peaks fixed
from measurements of the temperature power spectrum, neutrino
masses increase the expansion rate at z > 1 and so suppress clus-
tering on scales larger than the horizon size at the non-relativistic
transition (Kaplinghat et al. 2003). This e↵ect reduces C��L for
L > 10 (see Fig. 12) and gives less smoothing of the acoustic
peaks in CTT

` . As discussed in Planck Collaboration XVI (2013),
the constraint on

P
m⌫ from the Planck temperature power spec-

trum (and WMAP low-` polarization) is driven by the smoothing
e↵ect of lensing:

P
m⌫ < 0.66 eV (95%; Planck+WP+highL).

Curiously, this constraint is weakened by additionally including
the lensing likelihood to

X
m⌫ < 0.85 eV, (95%; Planck+WP+highL),

reflecting mild tensions between the measured lensing and tem-
perature power spectra, with the former preferring larger neu-

trino masses than the latter. Possible origins of this tension are
explored further in Planck Collaboration XVI (2013) and are
thought to involve both the C��L measurements and features in
the measured CTT

` on large scales (` < 40) and small scales
` > 2000 that are not fit well by the ⇤CDM+foreground model.
As regards C��L , Fisher estimates show that the bandpowers in
the range 130 < L < 309 carry most of the statistical weight
in determining the marginal error on

P
m⌫, and Fig. 12 reveals

a preference for high
P

m⌫ from this part of the spectrum. (We
have checked that removing the first bandpower from the lensing
likelihood, which is the least stable to data cuts and the details
of foreground cleaning as discussed in Sect. 7, has little impact
on our neutrino mass constraints.) We also note that a similar
trend for lower lensing power than the ⇤CDM expectation on
intermediate scales is seen in the ACT and SPT measurements
(Fig. 11). Adding the high-L information to the likelihood weak-
ens the constraint further, pushing the 95% limit to 1.07 eV. This
is consistent with our small-scale measurement having a signifi-
cantly lower amplitude. At this stage it is unclear what to make
of this mild tension between neutrino mass constraints from the
4-point function and those from the 2-point, and we caution
over-interpreting the results. We expect to be able to say more
on this issue with the further data, including polarization, that
will be made available in future Planck data releases.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last scattering surface,
the gravitational potentials that they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time integrated Sachs-Wolfe (ISW) e↵ect, or the Rees-Sciama
(R-S) e↵ect depending on whether the evolution of the poten-
tials concerned is in the linear (ISW) or non-linear (R-S) regime
of structure formation (Sachs & Wolfe 1967; Rees & Sciama
1968). In the epoch of dark energy domination, which occurs af-
ter z ⇠ 0.5 for the concordance ⇤CDM cosmology, large-scale
potentials tend to decay over time as space expands, resulting
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Fig. 13. Marginalised constraints on the optical depth in ⇤CDM
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solid black), and additionally including the lensing likeli-
hood (Planck+lensing; dashed red) or WMAP polarization
(Planck+WP; dashed-dotted blue). We use a prior ⌧ > 0.01 in
all cases.

rameters by a small amount and the median values shift by rather
less than 1� for all parameters. The largest gain is for ⌦ch2 (and
H0) where the errors improve by 20%. Adding further large- and
small-scale data produces no significant reduction in error bars,
as expected. For most parameters, the medians also change very
little except for ⌦ch2 which is dragged low by a further 0.3� on
adding the small-scale lensing information. (The shift in H0 is
due to the anti-correlation between H0 and ⌦ch2 caused by the
acoustic-scale degeneracy in the temperature power spectrum;
see Planck Collaboration XVI 2013.) These findings are consis-
tent with the power spectrum amplitude measurements discussed
in Sect. 6: we can lower the lensing power by reducing the matter
density, and this is favoured by the lower amplitudes measured
from the small-scale lensing power spectrum.

The tension between the small-scale power and the power
over the L = 40–400 range included in our fiducial likelihood,
coupled with our lower confidence in the accuracy of the bias
removal on small scales, is the reason that we do not include
these smaller scales at this stage in the Planck lensing likelihood.

6.1.3. Spatial curvature and dark energy

Inflation models with su�cient number of e-folds of expansion
naturally predict that the Universe should be very close to be-
ing spatially flat. Constraining any departures from flatness is
therefore a critical test of inflationary cosmology. However, the
primary CMB anisotropies alone su↵er from a geometric degen-
eracy, whereby models with identical primordial power spec-
tra, physical matter densities and angular-diameter distance to
last-scattering have almost identical power spectra (Efstathiou
& Bond 1999). The degeneracy is partly broken by lens-
ing (Stompor & Efstathiou 1999), with small additional con-
tributions from the late-ISW e↵ect (on large scales) and by
projection e↵ects in curved models (Howlett et al. 2012). In
⇤CDM models with curvature, the geometric degeneracy is two-
dimensional, involving the curvature and dark energy density,
and this limits the precision with which either can be determined
from the CMB alone.
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Fig. 14. Marginalized posteriors for the six-parameter ⇤CDM
model, shown as box plots, for Planck+WP+highL with various
lensing likelihoods. The red and blue lines are the median and
mean, respectively. The box and bar correspond to 68% and 95%
of the probability density, both centered on the median. The left-
most column is without the lensing likelihood and the median
of these constraints is shown by the grey line. The remaining
columns show the e↵ect of adding in the fiducial lensing like-
lihood (second column), and further adding a low-L bin (third
column), high-L bins (fourth column) or both (final column).

With the high-significance detection of lensing by Planck
in the temperature power spectrum (Planck Collaboration XVI
2013), and via the lens reconstruction reported here, the geomet-
ric degeneracy is partially broken, as shown in Fig. 15. The long
tail of closed models with low dark energy density (and expan-
sion rate at low redshift) allowed by the geometric degeneracy
have too much lensing power to be consistent with Planck’s mea-
sured temperature and lensing power spectra (see also Fig. 12).
We find marginalised constraints on the curvature parameter of

⌦K = �0.042+0.027
�0.018 (68%; Planck+WP+highL)

⌦K = �0.0096+0.010
�0.0082 (68%; Planck+lensing+WP+highL),

so that lensing reconstruction reduces the uncertainty on ⌦K by
more than a factor of two over limits driven by the smoothing
e↵ect on the acoustic peaks of CTT

` . This improvement is consis-
tent with the spread in C��L in curved models constrained by the
temperature power spectrum, relative to the errors on the recon-
struction power spectrum; see Fig. 12. Note that the mean value
of ⌦K also moves towards zero with the inclusion of the C��L
measurements. Adding the high-L and low-L data to the likeli-
hood brings no more than a percent-level improvement on the
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Fig. 12. Upper left: Planck measurements of the lensing power spectrum compared to the ⇤CDM mean prediction and 68% con-
fidence interval (dashed lines) for models fit to Planck+WP+highL (see text). The eight bandpowers are those used in the Planck
lensing likelihood; they are renormalized, along with their errors, to account for the small di↵erences between the lensed CTT

` in
the best-fit model and the fiducial model used throughout this paper. The error bars are the ±1� errors from the diagonal of the
covariance matrix. The colour coding shows how C��L varies with the optical depth ⌧ across samples from the ⇤CDM posterior
distribution. Upper right: as upper-left but using only the temperature power spectrum from Planck. Lower left: as upper-left panel
but in models with spatial curvature. The colour coding is for ⌦K . Lower right: as upper-left but in models with three massive
neutrinos (of equal mass). The colour coding is for the summed neutrino mass

P
m⌫.

constrained only by the Planck temperature power spectrum is
illustrated in the upper-right panel of Fig. 12, and suggests that
the direct C��L measurements may be able to improve constraints
on ⌧ further. This is indeed the case, as shown in Fig. 13 where
we compare the posterior distribution of ⌧ for the Planck temper-
ature likelihood alone with that including the lensing likelihood.
We find
⌧ = 0.097 ± 0.038 (68%; Planck)
⌧ = 0.089 ± 0.032 (68%; Planck+lensing).
At 95% confidence, we can place a lower limit on the optical
depth of 0.04 (Planck+lensing). This very close to the optical
depth for instantaneous reionization at z = 6, providing further
support for reionization being an extended process.

The ⌧ constraints via the lensing route are consistent with,
though weaker, than those from WMAP polarization. However,
since the latter measurement requires very aggressive cleaning
of Galactic emission (see e.g. Fig. 17 of Page et al. 2007), the
lensing constraints are an important cross-check.

6.1.2. Effect of the large and small scales on the
six-parameter ⇤CDM model

Before exploring the further parameters that can be constrained
with the lensing likelihood, we test the e↵ect on the ⇤CDM
model of adding the large-scale (10  L  40) and small-scale
(400  L  2048) lensing data to our likelihood. Adding addi-
tional data will produce random shifts in the posterior distribu-
tions of parameters, but these should be small here since the mul-
tipole range 40  L  400 is designed to capture over 90% of the
signal-to-noise (on an amplitude measurement). If the additional
data is expected to have little statistical power, i.e., the error bars
on parameters do not change greatly, but its addition produces
large shifts in the posteriors, this would be symptomatic either
of internal tensions between the data or an incorrect model.

In Fig. 14, we compare the posterior distributions of the
⇤CDM parameters for Planck+WP+highL alone with those af-
ter combining with various lensing likelihoods. Adding our fidu-
cial lensing likelihood (second column) reduces the errors on pa-
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m⌫ < 0.85 eV, (95%; Planck+lensing+WP+highL),

X
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Mild tension : constraint weaker than expected!

Temperature power spectra: more lensing = smaller mass

Reconstruction: less lensing = larger mass
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Fig. 12. Upper left: Planck measurements of the lensing power spectrum compared to the ⇤CDM mean prediction and 68% con-
fidence interval (dashed lines) for models fit to Planck+WP+highL (see text). The eight bandpowers are those used in the Planck
lensing likelihood; they are renormalized, along with their errors, to account for the small di↵erences between the lensed CTT

` in
the best-fit model and the fiducial model used throughout this paper. The error bars are the ±1� errors from the diagonal of the
covariance matrix. The colour coding shows how C��L varies with the optical depth ⌧ across samples from the ⇤CDM posterior
distribution. Upper right: as upper-left but using only the temperature power spectrum from Planck. Lower left: as upper-left panel
but in models with spatial curvature. The colour coding is for ⌦K . Lower right: as upper-left but in models with three massive
neutrinos (of equal mass). The colour coding is for the summed neutrino mass

P
m⌫.

constrained only by the Planck temperature power spectrum is
illustrated in the upper-right panel of Fig. 12, and suggests that
the direct C��L measurements may be able to improve constraints
on ⌧ further. This is indeed the case, as shown in Fig. 13 where
we compare the posterior distribution of ⌧ for the Planck temper-
ature likelihood alone with that including the lensing likelihood.
We find
⌧ = 0.097 ± 0.038 (68%; Planck)
⌧ = 0.089 ± 0.032 (68%; Planck+lensing).
At 95% confidence, we can place a lower limit on the optical
depth of 0.04 (Planck+lensing). This very close to the optical
depth for instantaneous reionization at z = 6, providing further
support for reionization being an extended process.

The ⌧ constraints via the lensing route are consistent with,
though weaker, than those from WMAP polarization. However,
since the latter measurement requires very aggressive cleaning
of Galactic emission (see e.g. Fig. 17 of Page et al. 2007), the
lensing constraints are an important cross-check.

6.1.2. Effect of the large and small scales on the
six-parameter ⇤CDM model

Before exploring the further parameters that can be constrained
with the lensing likelihood, we test the e↵ect on the ⇤CDM
model of adding the large-scale (10  L  40) and small-scale
(400  L  2048) lensing data to our likelihood. Adding addi-
tional data will produce random shifts in the posterior distribu-
tions of parameters, but these should be small here since the mul-
tipole range 40  L  400 is designed to capture over 90% of the
signal-to-noise (on an amplitude measurement). If the additional
data is expected to have little statistical power, i.e., the error bars
on parameters do not change greatly, but its addition produces
large shifts in the posteriors, this would be symptomatic either
of internal tensions between the data or an incorrect model.

In Fig. 14, we compare the posterior distributions of the
⇤CDM parameters for Planck+WP+highL alone with those af-
ter combining with various lensing likelihoods. Adding our fidu-
cial lensing likelihood (second column) reduces the errors on pa-
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The lensing map traces the matter distribution up to the last scattering surface
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Fig. 17. Cross-spectra of the Planck MV lensing potential with several galaxy catalogs, scaled by the signal-to-noise weighting
factor Ag�

L defined in Eq. (52). Cross-correlations are detected at approximately 20� significance for NVSS, 10� for SDSS LRGs
and 7� for both MaxBCG and WISE.

the Planck MV lensing potential: the NVSS quasar catalog, the
MaxBCG cluster catalog, an SDSS LRG catalog, and an infrared
catalog from the WISE satellite. The error bars for each correla-
tion are measured from the scatter of simulated lens reconstruc-
tions correlated with each catalog map, and are in generally good
agreement (at the 20% level) with analytical expectations. These
catalogs are discussed in more detail below.

1. NVSS Quasars: The NRAO VLA Sky Survey (NVSS)
(Condon et al. 1998) is a catalog of approximately two mil-
lion sources north of � = �40� which is 50% complete at
2.5mJy. Most of the bright sources are AGN-powered ra-
dio galaxies and quasars. We process this catalog follow-
ing Smith et al. (2007), pixelizing the catalog at HEALPix
Nside = 256 and projecting out the azimuthally symmetric
modes of the galaxy distribution in ecliptic coordinates to
avoid systematic striping e↵ects in the NVSS dataset. We
model the expected cross-correlation for this catalog using
a constant b(z) = 1.7 and a redshift distribution centered at
z0 = 1.1 given by

dN
dz
/
8>><
>>:

exp
⇣
� (z�z0)2

2(0.8)2

⌘
(z  z0)

exp
⇣
� (z�z0)2

2(0.3)2

⌘
(z � z0).

(54)

For this model, in the correlation with the MV lens recon-
struction we measure an amplitude of Âg�

NVSS = 1.03 ± 0.05.
2. SDSS LRGs: We use the LRG catalog of Ross et al. (2011);

Ho et al. (2012) based on Sloan Digital Sky Survey Data
Release 8 (SDSS DR8), which covers 25% of the sky. After
cutting to select all sources with photometric redshift 0.4 
z  0.8, and pgal > 0.2, we are left with approximately 1.4 ⇥
106 objects with a mean redshift of z = 0.55 and a scatter
of ±0.07. Apart from the cut above, we do not perform any
additional weighting on pgal. We model this catalog using
dN/dz taken from the histogram of photometric redshifts,

and take b(z) = 2. We measure Âg�
LRGs = 0.96 ± 0.10, very

consistent with expectation.
3. MaxBCG Clusters: The MaxBCG cluster catalog (Koester

et al. 2007) is a collection of 13, 823 clusters over approx-
imately 20% of the sky selected from the SDSS photomet-
ric data, covering a redshift range 0.1  z  0.3. It is be-
lieved to be 90% pure and more than 85% complete for
clusters with M � 1 ⇥ 1014M�. To simplify the sky cover-
age, we have discarded the three southern SDSS stripes in
the catalog, which reduces the overall sky coverage to ap-
proximately 17%. There are accurate photometric redshifts
(�z ⇠ 0.01) for all objects in the catalog, and so we can
construct dN/dz directly from the histogram of the redshift
distribution. Although these clusters are at very low red-
shift compared to the typical structures which source the
CMB lensing potential, they are strong tracers of dark mat-
ter, with an e↵ective bias parameter of b(z) = 3 (Huetsi
2009). We obtain a similar average bias parameter hb(M, z)i
for the MaxBCG clusters if we combine the mass-richness
relation of Bauer et al. (2012) and the halo bias prescription
of Tinker et al. (2010). Here measure a correlation with the
Planck lensing potential of Âg�

MaxBCG = 1.54 ± 0.21. This
is significantly larger than expected given the simple model
above, although as can be seen in Fig. 17 the shape of the
correlation is reasonable agreement.

4. WISE Catalog: The Wide Field Survey Infrared Explorer
(WISE) satellite (Wright et al. 2010) has mapped the full
sky in four frequency bands W1—W4 at 3.4, 4.6, 12, and
22 µm respectively. We start from the full mission catalog,
which contains over five hundred and sixty million objects.
To obtain a catalog with roughly uniform sensitivity over
the full sky and to eliminate stellar contamination we fol-
low Kovacs et al. (2013), selecting all sources with W1 mag-
nitudes less than 15.2 at galactic latitudes greater than 10� ,
and require W1 � W2 > 0.2 and W2 � W3 > 2.9. We cut

22

b(z) = 1.7 ! Âg�
NVSS = 1.03± 0.05 (⇡ 20�)
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b(z) = 3 ! Âg�
MaxBCG

= 1.54± 0.21 (⇡ 7�)

b(z) = 1 ! Âg�
WISE = 0.97± 0.13 (⇡ 7�)
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in a net blueshifting of the CMB photons which traverse these
potentials.

In the concordance ⇤CDM model, there is significant over-
lap between the large-scale structure which sources the CMB
lensing potential � and the ISW e↵ect (greater than 90% at
L < 100), although it should be kept in mind that we cannot
observe the ISW component by itself, and so the e↵ective cor-
relation with the total CMB temperature is much smaller, on the
order of 20%.

The correlation between the lensing potential and the ISW
e↵ect results in a non-zero bispectrum or three-point function
for the observed CMB fluctuations. This bispectrum is peaked
for “squeezed” configurations, in which one short leg at low-`
supported by the ISW contribution is matched to the lensing-
induced correlation between two small-scale modes at high-
`. Constraints on the amplitude of the lensing-ISW bispec-
trum using several di↵erent estimators are presented in Planck
Collaboration XXIV (2013). Here we will present an additional
constraint, in which the bispectrum measurement is recast as an
estimate for the amplitude of the cross-spectrum CT�

L , using the
filtering and frequency map combinations of our baseline lensing
reconstruction. Our measurements are in good agreement with
those made in Planck Collaboration XXIV (2013); a detailed
comparison of several lensing-ISW bispectrum estimators, in-
cluding the one used here, is presented in Planck Collaboration
XIX (2013).

Following Lewis et al. (2011), we begin with an estimator for
the cross-spectrum of the lensing potential and the ISW e↵ect as

ĈT�
L =

f �1
sky

2L + 1

X

M

T̂LM�̂
⇤
LM , (45)

where T̂`m = CTT
` T̄`m is the Wiener-filtered temperature map

and �̂ is given in Eq. (13). In Fig. 16 we plot the measured cross-
spectra for our individual frequency reconstructions at 100, 143,
and 217 GHz as well as the MV reconstruction. We also plot the
mean and scatter expected in the fiducial ⇤CDM model.

To compare quantitatively the overall level of the measured
CT�

L correlation to the value in ⇤CDM, we estimate an overall
amplitude for the cross-spectrum as

ÂT� = NT�
LmaxX

L=Lmin

(2L + 1)CT�,fid.
L ĈT�

L /(C
TT
L N��L ). (46)

The overall normalizationNT� is determined from Monte-Carlo
simulations. For our processing of the data, we find that it is well
approximated (at the 5% level) by the analytical approximation

NT� ⇡
2
6666664

LmaxX

L=Lmin

(2L + 1)
⇣
CT�,fid.

L

⌘2
/(CTT

L N��L )

3
7777775

�1

. (47)

The estimator above is equivalent to the KSW and skew-C` es-
timators of Komatsu et al. (2005); Munshi et al. (2011b) for the
lensing-ISW bispectrum which are used in Planck Collaboration
XXIV (2013) (up to implementation details such as filtering).
The mean-field subtraction performed when computing �̂LM can
be identified with the linear term of Creminelli et al. (2006)
which is necessary to minimize the estimator variance. The con-
tribution to the total S/N of this estimator as a function of the
short leg L is plotted in Fig. 2, where it can be seen that the con-
straining power for the fiducial correlation is almost entirely at
L < 100.

Fig. 16. Lensing-ISW bispectrum-related cross spectra com-
puted from Eq. (45). Black dashed lines indicate the average
value for simulations, while dark/light gray filled regions indi-
cate the expected one/two standard deviation scatter, also mea-
sured from simulations. The thin magenta line gives the expected
CT�

L cross-spectrum for our fiducial model. The agreement of
this curve with the simulation average illustrates that our esti-
mator is accurately normalized. In all the quantitative analysis
of this section we ignore L < 10, although we have plotted the
cross-spectra at these multipoles for interest.

In Table 2 we present measured values for the amplitude of
the lensing-ISW bispectrum using Eq. (45). The uncertainties on
ÂT� are determined by Monte-Carlo. We use the multipole range
10 < L < 100, given some of the potential systematic issues
with these multipoles identified in Sect. 7.4, although as can be
seen from Fig. 16, the inclusion of lower multipoles does not sig-
nificantly a↵ect our results. Note that for the ISW-lensing mea-
surements, inaccuracies in the mean-field subtraction do not bias
the estimator although they may degrade the statistical errors on
large scales. The di↵erences between the di↵erent amplitude fits
are well within the expected scatter, as we show in Table 3.

As a point of interest, we have also split our amplitude
constraint into the contribution from even and odd multipoles.
There are well known odd/even-multipole power asymmetries in
the temperature anisotropies on large angular scales, the study
of which is somewhat limited by the small number of avail-
able modes (Land & Magueijo 2005; Kim & Naselsky 2010;
Gruppuso et al. 2011; Bennett et al. 2011). The lensing potential
gives a potentially new window on these power asymmetries, as
a third somewhat independent measurement of power on large
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Table 2. Amplitudes AT�, errors �A and significance levels of the non-Gaussianity due to the ISW e↵ect, for all component sepa-
ration algorithms (C-R, NILC, SEVEM, and SMICA) and all the estimators (potential reconstruction, KSW, binned, and modal). For
the potential reconstruction case, an additional minimum variance (MV) map has been considered (see Planck Collaboration XVII
2013 for details).

Estimator C-R NILC SEVEM SMICA MV

T�
` � 10 0.52 ± 0.33 1.5 0.72 ± 0.30 2.4 0.58 ± 0.31 1.9 0.68 ± 0.30 2.3 0.78 ± 0.32 2.4
` � 2 0.52 ± 0.32 1.6 0.75 ± 0.28 2.7 0.62 ± 0.29 2.1 0.70 ± 0.28 2.5

KSW 0.75 ± 0.32 2.3 0.85 ± 0.32 2.7 0.68 ± 0.32 2.1 0.81 ± 0.31 2.6
binned 0.80 ± 0.40 2.0 1.03 ± 0.37 2.8 0.83 ± 0.39 2.1 0.91 ± 0.37 2.5
modal 0.68 ± 0.39 1.7 0.93 ± 0.37 2.5 0.60 ± 0.37 1.6 0.77 ± 0.37 2.1

Table 3. For each pair of estimators we provide the mean di↵er-
ence among the amplitudes estimated from the data (�AT�), the
dispersion of the di↵erences between the amplitudes estimated
from the simulations (sA), the ratio of this dispersion to the larger
of the corresponding sensitivities (⌘), and the correlation coe�-
cient (⇢).

KSW binned modal

�A ± sA �0.11 ± 0.10 �0.21 ± 0.21 �0.07 ± 0.21
T� ⌘ 0.32 0.56 0.56

⇢ 0.95 0.84 0.84

�A ± sA �0.10 ± 0.19 0.04 ± 0.19
KSW ⌘ 0.52 0.51

⇢ 0.86 0.87

�A ± sA 0.14 ± 0.15
binned ⌘ 0.41

⇢ 0.92

of the corresponding sensitivities (⌘, according to Table 2), and
the correlation coe�cient (⇢). As can be seen from the Table,
the agreement among estimators is good and the discrepancies
are only around 0.5�, which is the expected scatter, given the
correlation between the weights of di↵erent estimators discussed
above. Overall, the bispectrum estimators provide a larger value
of the amplitude AT�, as compared to the T� estimator.

We have also explored the joint estimation of the two bispec-
tra that are expected to be found in the data: the ISW-lensing;
and the residual point sources. A detailed description of the
non-Gaussian signal coming from point sources can be found in
Planck Collaboration XXIV (2013). The joint analysis of these
two signals performed with the KSW estimator, and the binned,
and modal estimators has shown that the ISW-lensing amplitude
estimation can be considered almost completely independent of
the non-Gaussian signal induced by the residual sources, and that
the two bispectra are nearly perfectly uncorrelated.

There is not a unique way of extracting a single signal-to-
noise value from Table 2. However, all the estimators show evi-
dence of ISW-lensing at about the 2.5� level.

Finally, we estimate that the bias introduced by the ISW-
lensing signal on the estimation of the primordial local shape
bispectrum (Eq. 14) is �prim ' 7, corresponding to the theoret-
ical expectation, as described in detail in Planck Collaboration
XXIV (2013).

4. Cross-Correlation with surveys

The ISW e↵ect can be probed through several di↵erent ap-
proaches. Among the ones already explored in the literature, the
classical test is to study the cross-correlation of the CMB tem-
perature fluctuations with a tracer of the matter distribution, typ-

ically a galaxy or cluster catalogue. As mentioned in the intro-
duction, the correlation of the CMB with LSS tracers was first
proposed by Crittenden & Turok (1996) as a natural way to am-
plify the ISW signal, otherwise very much subdominant with re-
spect to the primordial CMB fluctuations. Indeed, this technique
led to the first reported detection of the ISW e↵ect (Boughn &
Crittenden 2004).

Several methods have been proposed in the literature to study
statistically the cross-correlation of the CMB fluctuations with
LSS tracers, and, they can be divided into: real space statis-
tics (e.g., the cross-correlation function, hereinafter CCF); har-
monic space statistics (e.g., the cross-angular power spectrum,
hereinafter CAPS); and wavelet space statistics (e.g., the co-
variance of the Spherical Mexican Hat Wavelet coe�cients, or
SMHWcov from now on). These statistics are equivalent (in the
sense of the significance of the ISW detection) under ideal condi-
tions. However, ISW data analysis presents several problematic
issues (incomplete sky coverage, selection biases in the LSS cat-
alogues, foreground residuals in the CMB map, etc.). Hence, the
use of several di↵erent statistical approaches provides a more
robust framework for studying the ISW-LSS cross-correlation,
since di↵erent statistics may have di↵erent sensitivity to these
systematic e↵ects, The individual methods are described in more
detail in Sect. 4.1.

Besides the choice of specific statistical tool, the ISW cross-
correlation can be studied from two di↵erent (and complemen-
tary) perspectives. On the one hand, we can determine the am-
plitude of the ISW signal, as well as the corresponding signal-
to-noise ratio, by comparing the observed cross-correlation to
the expected one. On the other hand, we can postulate a null hy-
pothesis (i.e., that there is no correlation between the CMB and
the LSS tracer) and study the probability of obtaining the ob-
served cross-correlation. Whereas the former answers a question
regarding the compatibility of the data with the ISW hypothe-
sis (and provides an estimation of the signal-to-noise associated
with the observed signal), the latter tells us how incompatible
the measured signal is with the no-correlation hypothesis, i.e.,
against the presence of dark energy (assuming that the Universe
is spatially flat). Obviously, both approaches can be extended
to account for the cross-correlation signal obtained from sev-
eral surveys at the same time. These two complementary tests
are described in detail in Sect. 4.2, with the results presented in
Sect. 4.3.

4.1. Cross-correlation statistics

Let us denote the expected cross-correlation of two signals (x
and y) by ⇠xy

a , where a stands for a distance measure (e.g., the
angular distance ✓ between two points in the sky, the multipole
` of the harmonic transformation, or the wavelet scale R). For
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