The Future of BAO with BOSS, eBOSS, and DESI

Stephen Bailey

Lawrence Berkeley National Lab

Rencontres du Vietnam

2 August 2013

Thanks to:

BOSS Galaxy Clustering Group, and Daniel Eisenstein, David Schlegel, Nikhil Padmanabhan, David Kirkby, & J.P. Kneib

arXiv.org > astro-ph > arXiv:1307.7735

Astrophysics > Instrumentation and Methods for Astrophysics

The Tenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment

Christopher P. Ahn, Rachael Alexandroff, Carlos Allende Prieto, Friedrich Anders, Scott F. Anderson, Timothy Anderton, Brett H. Andrews, Éric Aubourg, Stephen Bailey, Fabienne A. Bastien, Julian E. Bautista, Timothy C. Beers, Alessandra Beifiori, Chad F. Bender, Andreas A. Berlind, Florian Beutler, Vaishali Bhardwaj, Jonathan C. Bird, Dmitry Bizyaev, Cullen H. Blake, Michael R. Blanton, Michael Blomqvist, John J. Bochanski, Adam S. Bolton, Arnaud Borde, Jo Bovy, Alaina Shelden Bradley, W. N. Brandt, Dorothée Brauer, J. Brinkmann, Joel R. Brownstein, Nicolás G. Busca, William Carithers, Joleen K. Carlberg, Aurelio R. Carnero, Michael A. Carr, Cristina Chiappini, S. Drew Chojnowski, Chia–Hsun Chuang, Johan Comparat, Justin R. Crepp, Stefano Cristiani, Rupert A.C. Croft, Antonio J. Cuesta, et al. (188 additional authors not shown)

(Submitted on 29 Jul 2013)

The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R~22,500 300-fiber spectrograph covering 1.514--1.696 microns. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.DR10 also roughly doubles the number of BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 square degrees.

We gratefully acknowledge support from the Simons Foundation and member institutions

Search or Article-id (Help | Advanced search)
All papers

Go!

Download:

PDF

• Other formats

Current browse context: astro-ph.IM < prev | next > new | recent | 1307

Change to browse by:

astro-ph astro-ph.CO astro-ph.GA

References & Citations

- INSPIRE HEP
- (refers to | cited by)
- NASA ADS

Bookmark (what is this?)
Solution

We gratefully acknowledge support from the Simons Foundation and member institutions

arXiv.org > astro-ph > arXiv:1307.7735			arch or Article-id (ced search) ‡ Go!
Astrophysics > Instrumentation and Methods for Astrophysics			Download: • PDF • Other formats		
The Tenth Data Release of the Sloan Digital Sky Survey: First					
Observatory Galactic Evolution Experiment			Current browse context: astro-ph.IM		
Christopher P. Ahn, Rachael A			< prev n new rece	nt 1307	
Anderson, Timothy Anderton, Bastien, Julian F. Bautista, Tim	Aderson, Timothy Anderton, Instign, Julian F. Bautista, Time Released on Wednesday		Change	to browse	by:
Berlind, Florian Beutler, Vaisha Michael R. Blanton, Michael Blo	~2x more BOSS data		astro-ph astro-p astro-p	oh.CO oh.GA	
Alaina Shelden Bradley, W. N. I G. Busca, William Carithers, Jo	First APOGEE data release sdss3.org/dr10		Reference INSPIRE	es & Citati	ons
Chiappini, S. Drew Chojnowsk			NASA A	NASA ADS	
(Submitted on 29 Jul 2013)			Bookmar E 📀 🎘 🕻	rk (what is this?) 🔁 🚮 💼 🚽	ii 😴

The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the tenth public data release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R~22,500 300-fiber spectrograph covering 1.514– -1.696 microns. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included.DR10 also roughly doubles the number of BOSS spectra over those included in the ninth data release. DR10 includes a total of 1,507,954 BOSS spectra, comprising 927,844 galaxy spectra; 182,009 quasar spectra; and 159,327 stellar spectra, selected over 6373.2 square degrees.

Planck 2013 @ z~1100

BOSS 2012 @ z~0.57

BOSS: Baryon Oscillation Spectroscopic Survey

3rd Generation of Sloan Digital Sky Survey

Spectra of:

- 1.5M galaxies
- 160k quasars

2.5m telescope at Apache Point Observatory

Improvements from SDSS-I & II

- More sky area (7600 \rightarrow 10800 deg²)
- Deeper redshifts (z ~ 0.5 \rightarrow 0.7)
- Better instrument throughput
- Denser sampling (640 →1000 spectra per exposure)

BOSS BAO Key Project

Plate Plugging

- 3° diameter FOV
- Each field has a unique plate drilled with target positions
- 1000 fibers per plate plugged by hand

Plates are mounted on carts & changed for each field

Up to 9 fields per night

~2200 fields in full survey

BOSS Data

1000 spectra at a time

- 500 per spectrograph, 2 channels covering 3600Å 10000Å
- ~5 exposures x 15 minutes each
 - -Repeat exposures until enough S/N

Quick extractions for quality control within a few minutes

Dynamically adjust number of exposures to match conditions

Full extractions daily

- Raw data -> spectra -> classification, redshift
- Starts within 15 minutes of data arriving

SDSS Data Releases each year

- DR9 : July 2012, ~1/3 of BOSS data
- DR10 : July 2013, ~2/3 of BOSS data
- DR11, DR12 : December 2014

~3/4 of papers on SDSS data are not from the SDSS collaboration. This is good!

sdss3.org/dr10

Data Release 9: July 2012

Current BOSS papers based upon this dataset

Data Release 11: Dec 2014

Data already taken and processed: BOSS results this fall will be DR10+DR11 results

2013-05-22

BOSS is on schedule to finish early (~Feb 2014)

~1/3 of BOSS Data

Stephen Bailey – LBINL

~1/3 of BOSS Data

Stephen Bailey – LBINL

BAO Hubble Diagram

Slight Tension with WMAP

Stephen Bailey – LBNL

Excellent Agreement with Planck

Cosmological Leverage

Stephen Bailey – LBNL

Cosmological Leverage

Cosmological Constraints

Reconstruction 101

Nikhil Padmanabhan

NP et al, 2012

	•	□ ▶ ◀ @ ▶ ◀ 분 ▶ ◀ 분 ▶ 분	うへつ
N. Padmanabhan (Yale)	Are we there yet?	July 15, 2013	9 / 40

NP et al, 2012

Are we there yet?

July 15, 2013 10 / 40

▲□▶ ▲□▶ ▲ = ▶ ▲ = りへぐ

Reconstruction 101

NP et al, 2012

Are we there yet?

July 15, 2013 11 / 40

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Nikhil Padmanabhan

NP et al, 2012

۷.	Padmana	bhan (Yale)	

Are we there yet?

July 15, 2013 12 / 40

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

BAO Reconstruction

Survey Geometry & Reconstruction

BAO Systematics

BAO famous as the method with lowest systematics

- Easy to mess up broadband shape, but
- Hard to make or move a bump

Good news: Systematics matter

- Measurements are getting so precise, systematics now matter!
- Reconstruction removes a ~0.5% bias
- Ross+ 2012 details many targeting & instrumental effects

Well under control, but require attentic

Redshift failures vs. focal plane location (scale: 0 – 12%)

27

3D BAO

Parallel to line of sight: H(z) – expansion of universe Perpendicular to line-of-sight: D_A(z) – distance

$$r_{\parallel}(z) = \int_{0}^{z} \frac{c}{H(z')} \, dz'$$

Graphics compliments of D. Kirkby, UC Irvine

 $\frac{C}{H(z)}$ Δz

 $\Delta r_{\perp} = (1+z) D_A(z) \Delta \theta$

3D BAO

observer

Parallel to line of sight: H(z) – expansion of universe Perpendicular to line-of-sight: D_A(z) – distance

Already standard for Lyman-alpha analyses; Coming to the galaxy analyses this fall (?)

 Δz

 $\Delta \theta$

 $\int_0^\infty \frac{c}{H(z')} \, dz'$ $r_{\parallel}(z)$

 $\Delta r_{\perp} = (1+z) D_A(z) \Delta \theta$

 $= \frac{c}{H(z)} \Delta z$

Graphics compliments of D. Kirkby, UC Irvine

BOSS Summary

On track to finish early (~Feb 2014)

- 1.5M galaxies
- 160k quasars

O(1%) BAO measurement at z=0.6

Analyses this fall on DR10 (2/3) and DR11 (90%)

- Galaxy BAO
 - Spherically averaged (like current results)
 - Full 3D fit to separate $d_A(z)$ from H(z)
- Lyman-alpha BAO
 - Fully 3D from the beginning
 - See Graziano Rossi's talk

eBOSS: Extending BOSS 2014 – 2020 Same hardware, different targeting & survey strategy

x10

	BOSS (2009-2014)	e-BOSS (2014-2020)	DESI
Telescope	2.5m	2.5m	4m @KPNO
Imaging survey	SDSS	SDSS, DES	ZTF, DEcam, CFHT?
Redshift	0.2 <z<0.7< td=""><td>0.6<z<3.5< td=""><td>0.2<z<3.5< td=""></z<3.5<></td></z<3.5<></td></z<0.7<>	0.6 <z<3.5< td=""><td>0.2<z<3.5< td=""></z<3.5<></td></z<3.5<>	0.2 <z<3.5< td=""></z<3.5<>
Number density	150 deg ⁻²	180 deg ⁻²	2800 deg ⁻²
Exposure time	80 minutes	80 minutes	10-15 minutes
Sky coverage	10000 deg ²	7500 deg ²	14000 deg ²
Field-of-view	6.7 deg^2	6.7 deg^2	$6.7 \ \mathrm{deg^2}$
Number of fibers	1000	1000	5000
Wavelength range	360-1000nm	360-1000nm	360-1000nm
Spectral resolution	1600-2600	1600-2600	2300-5000
Target galaxies	LRGs+Lya QSOs	LRGs+ELGs+QSOs	LRGs+ELGs+QSOs
FOM BAO gal.+Lya QSOs	21	~45	~140

Mayall Telescope @ Kitt Peak 4-m primary

Stephen Bailey – LBNL

Mayall Telescope in 5 Years

5000 fibers x 50 fields per night?

(vs 1000 x 9 fields for BOSS)

- Hand plugging custom drilled plates won't scale
- Need to move to robotic positioners

5000 Fiber Positioners

Multiple options under R&D

– UTSC (China), IAA Granada (Spain), AAT (Australia), LBNL (USA)

Comparison Testing @ LBNL

LAMOST 4000-fiber Positioner

Valuable lessons learned for developing 2nd generation fiber system

DESI Comparison to EUCLID+

BAO Today

BAO With DESI

~20 measurements better than 1% from 0.0 < z < 3.5

x10

	BOSS (2009-2014)	e-BOSS (2014-2020)	DESI
Telescope	2.5m	2.5m	4m @KPNO
Imaging survey	SDSS	SDSS, DES	ZTF, DEcam, CFHT?
Redshift	0.2 <z<0.7< td=""><td>0.6<z<3.5< td=""><td>0.2<z<3.5< td=""></z<3.5<></td></z<3.5<></td></z<0.7<>	0.6 <z<3.5< td=""><td>0.2<z<3.5< td=""></z<3.5<></td></z<3.5<>	0.2 <z<3.5< td=""></z<3.5<>
Number density	150 deg ⁻²	180 deg ⁻²	2800 deg ⁻²
Exposure time	80 minutes	80 minutes	10-15 minutes
Sky coverage	10000 deg ²	7500 deg ²	14000 deg ²
Field-of-view	6.7 deg^2	6.7 deg^2	$6.7 \ \mathrm{deg^2}$
Number of fibers	1000	1000	5000
Wavelength range	360-1000nm	360-1000nm	360-1000nm
Spectral resolution	1600-2600	1600-2600	2300-5000
Target galaxies	LRGs+Lya QSOs	LRGs+ELGs+QSOs	LRGs+ELGs+QSOs
FOM BAO gal.+Lya QSOs	21	~45	~140