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Planck 2013 @ z~1100
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Planck Collaboration: Cosmological parameters

Fig. 1. Planck foreground-subtracted temperature power spectrum (with foreground and other “nuisance” parameters fixed to their
best-fit values for the base ⇤CDM model). The power spectrum at low multipoles (` = 2–49, plotted on a logarithmic multi-
pole scale) is determined by the Commander algorithm applied to the Planck maps in the frequency range 30–353 GHz over
91% of the sky. This is used to construct a low-multipole temperature likelihood using a Blackwell-Rao estimator, as described
in Planck Collaboration XV (2013). The asymmetric error bars show 68% confidence limits and include the contribution from un-
certainties in foreground subtraction. At multipoles 50  `  2500 (plotted on a linear multipole scale) we show the best-fit CMB
spectrum computed from the CamSpec likelihood (see Planck Collaboration XV 2013) after removal of unresolved foreground com-
ponents. The light grey points show the power spectrum multipole-by-multipole. The blue points show averages in bands of width
�` ⇡ 31 together with 1� errors computed from the diagonal components of the band-averaged covariance matrix (which includes
contributions from beam and foreground uncertainties). The red line shows the temperature spectrum for the best-fit base ⇤CDM
cosmology. The lower panel shows the power spectrum residuals with respect to this theoretical model. The green lines show the
±1� errors on the individual power spectrum estimates at high multipoles computed from the CamSpec covariance matrix. Note the
change in vertical scale in the lower panel at ` = 50.
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BOSS 2012 @ z~0.57
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14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate
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for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k
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:
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The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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Planck Collaboration: Cosmological parameters

Fig. 1. Planck foreground-subtracted temperature power spectrum (with foreground and other “nuisance” parameters fixed to their
best-fit values for the base ⇤CDM model). The power spectrum at low multipoles (` = 2–49, plotted on a logarithmic multi-
pole scale) is determined by the Commander algorithm applied to the Planck maps in the frequency range 30–353 GHz over
91% of the sky. This is used to construct a low-multipole temperature likelihood using a Blackwell-Rao estimator, as described
in Planck Collaboration XV (2013). The asymmetric error bars show 68% confidence limits and include the contribution from un-
certainties in foreground subtraction. At multipoles 50  `  2500 (plotted on a linear multipole scale) we show the best-fit CMB
spectrum computed from the CamSpec likelihood (see Planck Collaboration XV 2013) after removal of unresolved foreground com-
ponents. The light grey points show the power spectrum multipole-by-multipole. The blue points show averages in bands of width
�` ⇡ 31 together with 1� errors computed from the diagonal components of the band-averaged covariance matrix (which includes
contributions from beam and foreground uncertainties). The red line shows the temperature spectrum for the best-fit base ⇤CDM
cosmology. The lower panel shows the power spectrum residuals with respect to this theoretical model. The green lines show the
±1� errors on the individual power spectrum estimates at high multipoles computed from the CamSpec covariance matrix. Note the
change in vertical scale in the lower panel at ` = 50.
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate
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for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k
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, equally spaced in 0 < k < 2hMpc
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The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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high-z and low-z universe,
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in between
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BOSS: Baryon Oscillation Spectroscopic Survey
3rd Generation of
Sloan Digital Sky Survey
Spectra of:
■ 1.5M galaxies
■ 160k quasars 

2.5m telescope at
Apache Point Observatory
Improvements from SDSS-I & II
■ More sky area (7600 → 10800 deg2)
■ Deeper redshifts (z ~ 0.5 → 0.7)
■ Better instrument throughput
■ Denser sampling (640 →1000 spectra per exposure)
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DESI @ Berkeley, 15 July 2013 D. Schlegel

SDSS DR7

BOSS galaxies
1.5 million
(dense map)

BOSS QSOs @ z > 2.1
160,000
(sparse map)
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Figure: Michael Blanton

BOSS BAO Key Project

See Graziano Rossi’s
talk about QSO/Lyα BAO

Not covered today:
– Redshift space distortions
– Neutrino masses
– Astronomy
– ...
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Plate Plugging
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■ 3° diameter FOV
■ Each field has a unique plate

drilled with target positions
■ 1000 fibers per plate

plugged by hand



Plates are mounted
on carts & changed
for each field

Up to 9 fields per night

~2200 fields in full survey
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BOSS Data
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1000 spectra at a time
■ 500 per spectrograph, 2 channels covering 3600Å – 10000Å
■ ~5 exposures x 15 minutes each

—Repeat exposures until enough S/N

Quick extractions for quality control within a few minutes
■ Dynamically adjust number of exposures to match conditions

Full extractions daily
■ Raw data –> spectra –> classification, redshift
■ Starts within 15 minutes of data arriving

SDSS Data Releases each year
■ DR9 : July 2012, ~1/3 of BOSS data
■ DR10 : July 2013, ~2/3 of BOSS data
■ DR11, DR12 : December 2014

~3/4 of papers on SDSS
data are not from the SDSS 
collaboration.  This is good!

sdss3.org/dr10
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Data Release 9: July 2012
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Current BOSS papers based upon this dataset

To Do

Done
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Data Release 10: July 2013
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Data released 2 days ago;
still working on the science papers...



Stephen Bailey – LBNL

Data Release 11: Dec 2014
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Data already taken and processed:
BOSS results this fall will be DR10+DR11 results

BOSS is on schedule to finish early (~Feb 2014)
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BAO in SDSS-III BOSS DR9 galaxies 11

Figure 3. The CMASS correlation function before (left) and after (right) reconstruction (crosses) with the best-fit models overplotted (solid lines). Error bars
show the square root of the diagonal covariance matrix elements, and data on similar scales are also correlated. The BAO feature is clearly evident, and well
matched to the best-fit model. The best-fit dilation scale is given in each plot, with the �2 statistic giving goodness of fit.

Figure 4. Average of the mock correlation functions before and after recon-
struction showing that the average acoustic peak sharpens up significantly
after reconstruction. This indicates that, on average, our reconstruction tech-
nique effectively removes some of the smearing caused by non-linear struc-
ture growth, affording us the ability to more precisely centroid the acoustic
peak.

where ~d is the measured correlation function and ~m(↵) is the best-
fit model at each ↵. C is the sample covariance matrix, and we use
a fitting range of 28 < r < 200h�1

Mpc. We therefore fit over 44
points using 5 parameters, leaving us with 39 degrees-of-freedom
(dof). Assuming a multi-variate Gaussian distribution for the fitted
data (this is tested and shown to be a good approximation in Manera
et al. 2012), the probability distribution of ↵ is

p(↵) / e��

2(↵)/2. (28)

The normalisation constant is determined by ensuring that the dis-
tribution integrates to 1. In calculating p(↵), we also impose a 15
per cent Gaussian prior on log(↵) to suppress values of ↵ ⌧ 1

that correspond to the BAO being shifted to the edge of our fit-
ting range at large scales. The sample variance is larger at these

scales, and the fitting algorithm is afforded some flexibility to hide
the acoustic peak within the larger errors.

The standard deviation of this probability distribution serves
as an error estimate on our distance measurement. The standard
deviation �

↵

for the data and each individual mock catalog can be
calculated as �2

↵

= h↵2
i � h↵i2, where the moments of ↵ are

h↵n

i =

Z
d↵ p(↵)↵n . (29)

Note that h↵i refers to the mean of the p(↵) distribution in this
equation only.

In reference to the mocks, h↵i will denote the ensemble mean
of the ↵ values measured from each individual mock, and ↵̃ will
denote the median. The term “Quantiles” will denote the 16th/84th

percentiles, which are approximately the 1� level if the distribution
is Gaussian. The scatter predicted by these quantiles suffers less
than the rms from the effects of extreme outliers.

5.3 Results

Using the procedure described in §5.2, we measure the shift in the
acoustic scale from the CMASS DR9 data to be ↵ = 1.016±0.017
before reconstruction and ↵ = 1.024± 0.016 after reconstruction.
The quoted errors are the �

↵

values measured from the probabil-
ity distributions, p(↵). Plots of the data and corresponding best-
fit models are shown in Fig. 3 for before (left) and after (right)
reconstruction. We see that for CMASS DR9, reconstruction has
not significantly improved our measurement of the acoustic scale.
However, in the context of the mock catalogues, this result is not
surprising.

Fig. 5 shows the �
↵

values measured from the mocks before
reconstruction versus those measured after reconstruction from the
correlation function fits. The CMASS DR9 point is overplotted as
the black star and falls within the locus of mock points. However,
we see that before reconstruction, our recovered �

↵

for CMASS
DR9 is much smaller than the mean expected from the mocks. For
typical cases, reconstruction improves errors on ↵, but if one has a
“lucky” realisation that yields a low error to begin with, then recon-
struction does not produce much improvement. The mock catalog
comparison in Figure 5 shows that the BOSS DR9 data volume

c
� 2011 RAS, MNRAS 000, 2–33

~1/3 of BOSS Data
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BAO in SDSS-III BOSS DR9 galaxies 11

Figure 3. The CMASS correlation function before (left) and after (right) reconstruction (crosses) with the best-fit models overplotted (solid lines). Error bars
show the square root of the diagonal covariance matrix elements, and data on similar scales are also correlated. The BAO feature is clearly evident, and well
matched to the best-fit model. The best-fit dilation scale is given in each plot, with the �2 statistic giving goodness of fit.

Figure 4. Average of the mock correlation functions before and after recon-
struction showing that the average acoustic peak sharpens up significantly
after reconstruction. This indicates that, on average, our reconstruction tech-
nique effectively removes some of the smearing caused by non-linear struc-
ture growth, affording us the ability to more precisely centroid the acoustic
peak.

where ~d is the measured correlation function and ~m(↵) is the best-
fit model at each ↵. C is the sample covariance matrix, and we use
a fitting range of 28 < r < 200h�1

Mpc. We therefore fit over 44
points using 5 parameters, leaving us with 39 degrees-of-freedom
(dof). Assuming a multi-variate Gaussian distribution for the fitted
data (this is tested and shown to be a good approximation in Manera
et al. 2012), the probability distribution of ↵ is

p(↵) / e��

2(↵)/2. (28)

The normalisation constant is determined by ensuring that the dis-
tribution integrates to 1. In calculating p(↵), we also impose a 15
per cent Gaussian prior on log(↵) to suppress values of ↵ ⌧ 1

that correspond to the BAO being shifted to the edge of our fit-
ting range at large scales. The sample variance is larger at these

scales, and the fitting algorithm is afforded some flexibility to hide
the acoustic peak within the larger errors.

The standard deviation of this probability distribution serves
as an error estimate on our distance measurement. The standard
deviation �

↵

for the data and each individual mock catalog can be
calculated as �2

↵

= h↵2
i � h↵i2, where the moments of ↵ are

h↵n

i =
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d↵ p(↵)↵n . (29)

Note that h↵i refers to the mean of the p(↵) distribution in this
equation only.

In reference to the mocks, h↵i will denote the ensemble mean
of the ↵ values measured from each individual mock, and ↵̃ will
denote the median. The term “Quantiles” will denote the 16th/84th

percentiles, which are approximately the 1� level if the distribution
is Gaussian. The scatter predicted by these quantiles suffers less
than the rms from the effects of extreme outliers.

5.3 Results

Using the procedure described in §5.2, we measure the shift in the
acoustic scale from the CMASS DR9 data to be ↵ = 1.016±0.017
before reconstruction and ↵ = 1.024± 0.016 after reconstruction.
The quoted errors are the �

↵

values measured from the probabil-
ity distributions, p(↵). Plots of the data and corresponding best-
fit models are shown in Fig. 3 for before (left) and after (right)
reconstruction. We see that for CMASS DR9, reconstruction has
not significantly improved our measurement of the acoustic scale.
However, in the context of the mock catalogues, this result is not
surprising.

Fig. 5 shows the �
↵

values measured from the mocks before
reconstruction versus those measured after reconstruction from the
correlation function fits. The CMASS DR9 point is overplotted as
the black star and falls within the locus of mock points. However,
we see that before reconstruction, our recovered �

↵

for CMASS
DR9 is much smaller than the mean expected from the mocks. For
typical cases, reconstruction improves errors on ↵, but if one has a
“lucky” realisation that yields a low error to begin with, then recon-
struction does not produce much improvement. The mock catalog
comparison in Figure 5 shows that the BOSS DR9 data volume
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~1/3 of BOSS Data
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BAO Scale = Standard Ruler
for angular diameter distance
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BAO Hubble Diagram
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A BAO Hubble Diagram

Anderson et al, 2012

N. Padmanabhan (Yale) Are we there yet? July 15, 2013 4 / 40

Anderson+ 2012

Di
st

an
ce

prediction, not fit



Stephen Bailey – LBNL

Slight Tension with WMAP
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Excellent Agreement with Planck
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(too bad...)
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Cosmological Leverage
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Cosmological Leverage
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Cosmological Constraints
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D
V

(0.57). This tells us what the supernova distance-redshift rela-
tion predicts for the ratio between two BAO measurements, subject
to the regularisation of the supernova data implied by the paramet-
ric cosmological model that we have chosen. In effect, we have fit
a three-parameter distance-redshift relation to the supernova data
and then used this to infer D

V

(z) from the observed distance mod-
uli. As a technical note, these results will differ slightly from those
from MCMC that combine BAO and SNe data, because the BAO
data will limit the exploration of the distance-redshift degeneracy
space.

Comparing z = 0.57 to z = 0.35, we find that the super-
novae measure D

V

(0.35)/D
V

(0.57) = 0.6579±0.0063, a 1.0 per
cent inference. From the CMASS measurement of D

V

(0.57)/r
s

=

13.67 ± 0.22, this predicts D
V

(0.35)/r
s

= 8.99 ± 0.14 ± 0.09,
where the first error arrises from the CMASS error and the second
error is due to the error in the supernova propagation. This predic-
tion can be compared to the Padmanabhan et al. (2012a) measure-
ment from SDSS-II LRG of D

V

(0.35)/r
s

= 8.88± 0.17. Hence,
the ratio of these two BAO measurements agrees well with the su-
pernova data.

Similarly, at z = 0.10, we find that the supernovae measure
D

V

(0.10)/D
V

(0.57) = 0.2018 ± 0.0038, a 1.9 per cent infer-
ence. The combination with the CMASS data would then predict
D

V

(0.10)/r
s

= 2.759 ± 0.044 ± 0.052, following the notation
from the previous paragraph. This can be compared to the 6dFGS
measurement of 2.81±0.13, where we have scaled from z = 0.106
to z = 0.1. Again, the ratio of the BAO measurements agrees well
with the supernova distance scale.

We present these results graphically in Fig. 21. Here, we nor-
malise the D

V

(z) from the Markov Chain at z = 0.57 and con-
sider the mean and 1 � range explored by the chain. Of course,
one might have chosen to normalise at another redshift; this ver-
sion presents how well the CMASS BAO data can be transferred
to other redshifts. One can see the excellent agreement with all of
the other BAO results. One also sees that the supernova relative
distance scale is still more constraining than the BAO relative dis-
tance scale, by a factor of order 2-3. Of course, the supernovae do
not provide an absolute distance scale; this plot is indicating only
their constraint on the slope of the distance-redshift relation. In the
future, we many wish to combine SNe and BAO distances to fur-
ther constrain the reciprocity, or distance-duality, relation which is
a generic prediction of any theory of gravity where photons follow
null geodesics (Bassett & Kunz 2004; Lampeitl et al. 2010).

Finally, considering the constraint on the Hubble constant, the
supernovae predict a tight relation between D

V

(0.57) and 1/H0.
We quote this quantity as H0DV

(0.57)/(0.57c) = 0.844 with a
2.3 per cent error. Using this result, the CMASS BAO data with a
sound horizon given by the fiducial cosmological model predicts
H0 = 68.9 km/s/Mpc, with 1.7 per cent error from the z = 0.57
calibration and 2.3 per cent error from the supernova transfer to
z = 0. This value is in mild tension with the direct measurement
of H0 = 73.8 ± 2.4 km/s/Mpc using the NGC 4258 maser and
HST near-IR observations of Cepheid variable stars (Riess et al.
2011). Fig. 21 plots this measurement, but we remind readers that
the placement of this point assumes the fiducial value of r

s

, which
creates a 1 per cent uncertainty not included in the errors. We will
quantify this point further in the next section, using a full Markov
Chain.
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Figure 22. 68 per cent contours for H0 vs ⌦m in the ⇤CDM cosmological
model. The CMASS DR9 BAO data improve our measurements of H0 and
⌦m, and are consistent with the SDSS-II LRG measurements. The dashed
grey lines are lines of constant ⌦mh2 using the WMAP7 values and mod-
ulated by 1� (⌦mh2 = 0.1334+0.0056

�0.0055).
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Figure 23. 68 per cent contours for H0 vs ⌦K in the oCDM cosmologi-
cal model. The BAO data break the geometrical degeneracy in the CMB,
and the CMASS DR9 measurements are consistent with the SDSS-II LRG
measurements.

9 COSMOLOGICAL PARAMETERS

To explore the implications of these results for the values of cosmo-
logical parameters, we consider the standard CDM parametrisation
of the baryon and matter densities {⌦m,⌦

b

}, the primordial power
spectrum slope n

s

, the optical depth to reionization ⌧ , the Hubble
constant H0 and the amplitude of matter clustering �8. We also
examine models with a non-zero curvature ⌦K as well as models
where the dark energy differs from a cosmological constant with
an equation of state parameterised by w(a) = w0 + (1 � a)w

a

(Chevallier & Polarski 2001; Linder 2003), where a is the scale
factor.

We follow the methodology in Mehta et al. (2012), using the
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Anderson+ 2012

WMAP
only

WMAP+ 
z~0.6 BAO

WMAP+
z~0.3 BAO

Only 1/3 of
BOSS data
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DR9 DR11

DR9 DR11

BAO Reconstruction
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Anderson+ 2012

Simulations
Data

Simulations

Uncertainty on the BAO scale
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Survey Geometry & Reconstruction
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Filling in the hole
significantly reduces
edge effects in
reconstruction
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BAO Systematics

27

BAO famous as the method with
lowest systematics
■ Easy to mess up broadband shape, but
■ Hard to make or move a bump

Good news: Systematics matter
■ Measurements are getting so precise,

systematics now matter!
■ Reconstruction removes a ~0.5% bias
■ Ross+ 2012 details many targeting & instrumental effects

Well under control, but require attention

BAO in SDSS-III BOSS DR9 galaxies 11

Figure 3. The CMASS correlation function before (left) and after (right) reconstruction (crosses) with the best-fit models overplotted (solid lines). Error bars
show the square root of the diagonal covariance matrix elements, and data on similar scales are also correlated. The BAO feature is clearly evident, and well
matched to the best-fit model. The best-fit dilation scale is given in each plot, with the �2 statistic giving goodness of fit.

Figure 4. Average of the mock correlation functions before and after recon-
struction showing that the average acoustic peak sharpens up significantly
after reconstruction. This indicates that, on average, our reconstruction tech-
nique effectively removes some of the smearing caused by non-linear struc-
ture growth, affording us the ability to more precisely centroid the acoustic
peak.

where ~d is the measured correlation function and ~m(↵) is the best-
fit model at each ↵. C is the sample covariance matrix, and we use
a fitting range of 28 < r < 200h�1

Mpc. We therefore fit over 44
points using 5 parameters, leaving us with 39 degrees-of-freedom
(dof). Assuming a multi-variate Gaussian distribution for the fitted
data (this is tested and shown to be a good approximation in Manera
et al. 2012), the probability distribution of ↵ is

p(↵) / e��

2(↵)/2. (28)

The normalisation constant is determined by ensuring that the dis-
tribution integrates to 1. In calculating p(↵), we also impose a 15
per cent Gaussian prior on log(↵) to suppress values of ↵ ⌧ 1

that correspond to the BAO being shifted to the edge of our fit-
ting range at large scales. The sample variance is larger at these

scales, and the fitting algorithm is afforded some flexibility to hide
the acoustic peak within the larger errors.

The standard deviation of this probability distribution serves
as an error estimate on our distance measurement. The standard
deviation �

↵

for the data and each individual mock catalog can be
calculated as �2

↵

= h↵2
i � h↵i2, where the moments of ↵ are

h↵n

i =

Z
d↵ p(↵)↵n . (29)

Note that h↵i refers to the mean of the p(↵) distribution in this
equation only.

In reference to the mocks, h↵i will denote the ensemble mean
of the ↵ values measured from each individual mock, and ↵̃ will
denote the median. The term “Quantiles” will denote the 16th/84th

percentiles, which are approximately the 1� level if the distribution
is Gaussian. The scatter predicted by these quantiles suffers less
than the rms from the effects of extreme outliers.

5.3 Results

Using the procedure described in §5.2, we measure the shift in the
acoustic scale from the CMASS DR9 data to be ↵ = 1.016±0.017
before reconstruction and ↵ = 1.024± 0.016 after reconstruction.
The quoted errors are the �

↵

values measured from the probabil-
ity distributions, p(↵). Plots of the data and corresponding best-
fit models are shown in Fig. 3 for before (left) and after (right)
reconstruction. We see that for CMASS DR9, reconstruction has
not significantly improved our measurement of the acoustic scale.
However, in the context of the mock catalogues, this result is not
surprising.

Fig. 5 shows the �
↵

values measured from the mocks before
reconstruction versus those measured after reconstruction from the
correlation function fits. The CMASS DR9 point is overplotted as
the black star and falls within the locus of mock points. However,
we see that before reconstruction, our recovered �

↵

for CMASS
DR9 is much smaller than the mean expected from the mocks. For
typical cases, reconstruction improves errors on ↵, but if one has a
“lucky” realisation that yields a low error to begin with, then recon-
struction does not produce much improvement. The mock catalog
comparison in Figure 5 shows that the BOSS DR9 data volume
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Figure 3. The percentage of failed CMASS redshifts as a function of the
position on the tile, averaged over 817 DR9 tiles. The lightest regions are
0% and the darkest regions are 12%. �↵̃ is the distance along the right
ascension direction and ��̃ is the distance along the declination direction
(both transformed so that the true angular separations are represented).
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Figure 4. Galaxy spatial co-moving number density assuming a flat ⇤CDM
cosmology with ⌦

m

= 0.274, for CMASS galaxies. The solid line is cal-
culated for all galaxies, while the dashed line only includes those galaxies
nearest to a redshift failure, renormalised to match the total density of the
full sample. The error-bars assume Poissonian distribution for the number
counts in each bin.

that fibers are not assigned randomly. In order to test this effect, we
translate all of the fiber positions of galaxies targeted by BOSS to
positions relative to the center of the tile. This allows us to deter-
mine the redshift failure rate as a function of position on the tile
(and thus whether redshift failures may impart angular fluctuations
in the density of observed galaxies). The result of this test is dis-
played in Fig. 3. The failed redshifts are not only more likely to be
on the edge of a tile, but appear concentrated near the minimum
and maximum right ascension of each tile. We apply weights (see
Section 3.2) to correct for this spatial dependence, but find there to
be a negligible affect on the measured clustering (see Fig. 5).

Fig. 4 shows the galaxy spatial number density for the
CMASS sample, as a function of redshift. We also plot the nor-
malised (so that it has the same integral) number density against
redshift for the galaxies nearest to a redshift failure, n

nzf

(z). Were
there a strong trend with redshift, for example that we were only
missing redshifts for high-redshift galaxies, we should expect that
the nearest neighbours to the redshift failures (which should be se-
lected with similar properties, such as fiber ID, seeing and extinc-
tion), should predominantly be at low redshift. In fact we see no
such trend — if anything we find evidence to the contrary. We esti-
mate the uncertainty on n

nzf

(z) in each z bin by assuming a Pois-
sonian distribution for the number counts in each bin and we deter-
mine the �2 when the (normalized) n

nzf

(z) is compared to that of
the full n(z). We find �

2
= 34.4 for 0.43 < z < 0.7 (27 bins; 15%

of consistent samples would have a higher �2) and �

2
= 23.7 for

0.5 < z < 0.7 (20 bins; 26% of consistent sample would have a
higher �2). We therefore find no evidence that the spatially depen-
dent component (which is the component that we are interested in,
as it may create a spurious clustering signal) of the redshift-failure
probability is dependent on redshift.

3 ANALYSIS TECHNIQUES

3.1 Clustering Estimators

We use the Landy & Szalay (1993) estimator to calculate the
anisotropic redshift space correlation function, ⇠(s, µ), where s is
the redshift-space separation in h

�1Mpc and µ is the angle to the
line-of-sight.

⇠(s, µ) =

DD(s, µ)� 2DR(s, µ)

RR(s, µ)

+ 1 (19)

where D represents the data sample (i.e., BOSS galaxies) and R

represents the random sample (occupying the angular footprint and
with the same redshift distribution as the data sample) and the pair-
counts are normalised to the total number.

In linear theory, the first three moments of ⇠(s, µ), expanded
in Legendre polynomials, contain all of the information:

⇠

`

(s) =

(2`+ 1)

2

Z 1

�1

dµP

`

(µ)⇠(s, µ). (20)

We therefore weight pairs by P

`

(yielding separate pair-counts for
` = 0, 2, 4 for each of DD, DR, and RR). Labelling the P

`

weighted pair-counts with subscript `, we determine ⇠

`

(s) via

2⇠

`

(s)

2`+ 1

=

DD

`

(s)� 2DR

`

(s) +RR

`

(s)

RR0(s)
(21)

We count pairs in bin 7 h

�1 Mpc wide in s and focus our efforts
on understanding ⇠0 and ⇠2, (rather than the full ⇠(s, µ)) as these
two measurements are expected to contain almost all of the infor-
mation. In general, one must be careful, as our procedure implicitly

c� 2012 RAS, MNRAS 000, 1–28

Ross+ 2012

Redshift failures vs.
focal plane location
(scale: 0 – 12%)
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Parallel to line of sight:
    H(z) – expansion of universe
Perpendicular to line-of-sight:
    DA(z) – distance

Graphics compliments of D. Kirkby, UC Irvine

Δθ 

Δθ 

Δz 

Δz 



Stephen Bailey – LBNL

rk(z) =

Z z

0

c

H(z0)
dz0

�rk =
c

H(z)
�z

�r? = rk(z)�✓

⌦k

�r? = (1 + z)DA(z)�✓

�r? ' rk(z)�✓

"
1 +

1

6
⌦k

✓
rk(z)

c/H0

◆2
#

�rk = �r?

�rk = �r? = rs(rk(z), c/H(z))

1

✹
✹

rk(z) =

Z z

0

c

H(z0)
dz0

�rk =
c

H(z)
�z

�r? = rk(z)�✓

�r? ' rk(z)�✓

"
1 +

1

6
⌦k

✓
rk(z)

c/H0

◆2
#

�rk = �r?

�rk = �r? = rs(rk(z), c/H(z))

1

rk(z) =

Z z

0

c

H(z0)
dz0

�rk =
c

H(z)
�z

�r? = rk(z)�✓

�r? ' rk(z)�✓

"
1 +

1

6
⌦k

✓
rk(z)

c/H0

◆2
#

�rk = �r?

�rk = �r? = rs(rk(z), c/H(z))

1

observer

rk(z) =

Z z

0

c

H(z0)
dz0

�rk =
c

H(z)
�z

�r? = rk(z)�✓

�r? ' rk(z)�✓

"
1 +

1

6
⌦k

✓
rk(z)

c/H0

◆2
#

�rk = �r?

�rk = �r? = rs(rk(z), c/H(z))

1

≈

rk(z) =

Z z

0

c

H(z0)
dz0

�rk =
c

H(z)
�z

�r? = rk(z)�✓

�r? ' rk(z)�✓

"
1 +

1

6
⌦k

✓
rk(z)

c/H0

◆2
#

�rk = �r?

�rk = �r? = rs(rk(z), c/H(z))

1

rk(z) =

Z z

0

c

H(z0)
dz0

�rk =
c

H(z)
�z

�r? = rk(z)�✓

⌦k

�r? = DA(z)�✓

�r? ' rk(z)�✓

"
1 +

1

6
⌦k

✓
rk(z)

c/H0

◆2
#

�rk = �r?

�rk = �r? = rs(rk(z), c/H(z))

1

3D BAO

28

Parallel to line of sight:
    H(z) – expansion of universe
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Already standard for
Lyman-alpha analyses;
Coming to the galaxy
analyses this fall (?)
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BOSS Summary
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On track to finish early (~Feb 2014)
■ 1.5M galaxies
■ 160k quasars

O(1%) BAO measurement at z=0.6
Analyses this fall on DR10 (2/3) and DR11 (90%)
■ Galaxy BAO

— Spherically averaged (like current results)
— Full 3D fit to separate dA(z) from H(z)

■ Lyman-alpha BAO
— Fully 3D from the beginning
— See Graziano Rossi’s talk
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SDSS DR7

BOSS galaxies
1.5 million
(dense map)

BOSS QSOs @ z > 2.1
160,000
(sparse map)

4
Figure: Michael Blanton

BOSS BAO Key Project

Discovery
Space

690k QSOs
>2.1 Lyα 
1 < z < 2

eBOSS: Extending BOSS 2014 – 2020

30

Same hardware, different targeting & survey strategy

350k LRGs
z < 0.8

200k ELGs
0.6 < z < 1.0

eBOSS:

z<0.7
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Current & Future BAO experiments 

5

BOSS (2009-2014) e-BOSS (2014-2020) DESI

Telescope 2.5m 2.5m 4m @KPNO
Imaging survey SDSS SDSS, DES ZTF,  DEcam, CFHT?
Redshift 0.2<z<0.7 0.6<z<3.5 0.2<z<3.5
Number density 150 deg-2 180 deg-2 2800 deg-2

Exposure time 80 minutes 80 minutes 10-15 minutes
Sky coverage 10000 deg2 7500 deg2 14000 deg2

Field-of-view 6.7 deg2 6.7 deg2 6.7 deg2

Number of fibers 1000 1000 5000
Wavelength range 360-1000nm 360-1000nm 360-1000nm
Spectral resolution 1600-2600 1600-2600 2300-5000
Target galaxies LRGs+Lya QSOs LRGs+ELGs+QSOs LRGs+ELGs+QSOs

FOM BAO gal.+Lya QSOs 21 ~45 ~140

x10



BOSS
Baryon Oscillation

Spectroscopic Survey

BigBOSS

DES
Dark Energy Survey

DESpec
Dark Energy Spectrograph

MS-DESI
Mid-Scale Dark Energy Spectroscopic Instrument

DESI
Dark Energy Spectroscopic Instrument

eBOSS
Extending BOSS

2014: Same instrument,
different targets

Proposal for 2018:
New instrument,

different telescope
(Mayall)

Proposal for 2018:
Photo –> Spectro
Survey at Blanco

DOE merges, 
gives new name

Easier to say

Project Name Etymology
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Mayall Telescope @ Kitt Peak
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4-m primary
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Mayall Telescope in 5 Years
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Corrector 
lenses
3° FOV

5000 fiber 
positioners on 
1-m focal plane

5000 fibers

10 spectrographs
X 3 channels each
3600 – 9800 Å

DESI Design is
SDSS-inspired:
simple, high-throughput
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5000 fibers x 50 fields per night?

35

■ Hand plugging custom drilled plates 
won’t scale

■ Need to move to robotic positioners

(vs 1000 x 9 fields for BOSS)
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5000 Fiber Positioners
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Multiple options under R&D
– UTSC (China), IAA Granada (Spain), AAT (Australia), LBNL (USA) 

Comparison Testing @ LBNL
1 meter
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LAMOST 4000-fiber Positioner

37

Valuable lessons learned for developing 2nd generation fiber system



Stephen Bailey – LBNL

We’ve promised < 1% accuracy

WFIRST SDT Report, 2012

If we got the data today, could we deliver?

N. Padmanabhan (Yale) Are we there yet? July 15, 2013 2 / 40

(DESI)

DESI Comparison to EUCLID+

38
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Plot from
WFIRST
study
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BAO Today

39

+BOSS
LyA
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BAO With DESI

40

~20 measurements better than 1% from 0.0 < z < 3.5

DESI will be the
definitive BAO experiment
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Current & Future BAO experiments 

5

BOSS (2009-2014) e-BOSS (2014-2020) DESI

Telescope 2.5m 2.5m 4m @KPNO
Imaging survey SDSS SDSS, DES ZTF,  DEcam, CFHT?
Redshift 0.2<z<0.7 0.6<z<3.5 0.2<z<3.5
Number density 150 deg-2 180 deg-2 2800 deg-2

Exposure time 80 minutes 80 minutes 10-15 minutes
Sky coverage 10000 deg2 7500 deg2 14000 deg2

Field-of-view 6.7 deg2 6.7 deg2 6.7 deg2

Number of fibers 1000 1000 5000
Wavelength range 360-1000nm 360-1000nm 360-1000nm
Spectral resolution 1600-2600 1600-2600 2300-5000
Target galaxies LRGs+Lya QSOs LRGs+ELGs+QSOs LRGs+ELGs+QSOs

FOM BAO gal.+Lya QSOs 21 ~45 ~140

x10




