MPI Kernphysik, Heidelberg Humboldt Univ. Berlin **Ruhr-Univ. Bochum Univ. Hamburg LSW Heidelberg Univ.** Tübingen Ecole Polytechnique, Palaiseau **APC** Paris Univ. Paris VI-VII Paris Observatory, Meudon LAPP Annecy **LAOG Grenoble LPTA Montpellier CEA Saclav CESR** Toulouse **Durham Univ. Dublin Inst. for Adv. Studies Charles Univ.**, **Prague** Yerewan Physics Inst. North-West Univ., Potchefstroom Univ. of Namibia, Windhoek

High Energy Stereoscopic System: Status and Results (Summer 2006)

J.P. Tavernet for the HESS collaboration L.P.N.H.E. - Paris VI university -

e**nco**ntres du Vietnam

Outline :

- H.E.S.S. Status 1
 - Calibration and Methods
 - Crab Nebula
- Galactic sources
- Extragalactic sources
- H.E.S.S. Status 2
 - Phase 2 of the project

Outline :

- H.E.S.S. Status 1
 - Calibration and Methods
 - Crab Nebula
- Galactic sources
- Extragalactic sources
- H.E.S.S. Status 2
 - Phase 2 of the project

Array of 4 Atmospheric Cerenkov:

- Telescopes in Namibia
 (23^o16'18'' South, 16°30'00' East)'
- Large dishes (107 m²)
- Fast camera (1ns integration) of 960 pixels
- field of view 5°
- observations in moonless night 1000h/year
- Fully operational since Dec. 2003

Performances;

- Trigger threshold 100 GeV @ zenith
- Angular resolution < 0.1°
- Energy resolution ~ 15%
- Effective area > 10^5 m^2
- 1 Crab @ zenith in 30 s (vs 1 h for previous generation)
- 1% Crab in 25 h

STEREO: TELLS WHERE THE SHOWER CAME FROM

Geometrical determination the shower impact on ground
 => resolution of the energy/ impact parameter degeneracy

• 0.10 -> 0.06° : allows source morphology studies

Crab Nebula

- Standard reference source for VHE astronomy
- Point source for H.E.S.S.
- At H.E.S.S. latitude, it culminates at 45°, so at a large zenith angle θ^2 (degree²)

Percentage

long term stability (period 2 and 3 flux is 10% higher, but difference is smaller than the rms spread).

Crab Nebula: spectrum and sky map

Uncertainty	Flux	Index
MC Shower interactions	1%	
MC Atmospheric sim.	10%	
Broken pixels	5%	
Live time	1%	
Selection cuts	8%	0.08
Background est.	1%	0.01
Run-by-run variability	15%	-
Data set variability	-	0.05
Total	20%	0.09

systematic error

Our calibration source (Crab nebula) is observed with :

- For standard selection :
 - 6.0 γ min⁻¹
 - significance of 27/√t(hr⁻¹)
- long term stability shows that instrument, calibration and analysis methods are well understood

=> more confident for the old and future results.

Time as function of signal strength required for a 5σ detection at 20° zenith angle for standard cuts : - 30 seconds for source with a flux of the Crab - 25 hours : 1% of flux of the Crab

Outline :

- H.E.S.S. Status 1
 - Calibration and Methods
 - Crab Nebula

• Galactic sources

- Galactic center
- LS5039
- Extragalactic sources
- H.E.S.S. Status 2
 - Phase 2 of the project

RXJ1713.7-3946 (See talk of U. Schwanke !!)

Galactic center region:

Observations:

- a point-like source of VHE γ -rays at the gravitational center of the Galaxy
- the supernovae remnant/pulsar wind nebula G0.9+0.1
- structures under these two sources signal

GC molecular clouds Tsuboi et al. 1999

•Excellent correlation with molecular clouds

Galactic γ -rays map after subtraction

Diffuse emission from the galactic center region

density of molecular gas

Strong correlation between VHE γ -rays distribution and molecular clouds (traced by CS emission):

indication for VHE emission coming from interactions of CRs with molecular clouds

rather uniform CR density in GC

in case of a power law energy distribution, spectral index of the γ -rays \approx spectral index of the CRs

Galactic Longitude (degrees)

-1

• Power law spectrum with $\Gamma = 2.29 \pm 0.07 \pm 0.20$ $\neq \Gamma$ =2.75 'classical' CR spectrum \rightarrow probable proximity of particle accelerators

•Diffuse Model :

- γ -rays flux with 'classical' CRs spectrum

(Γ =2.75) and a total target mass estimated

from CS measurement

- Additional component to GC RCs needed

- Energy of a single SNR is enough
- Morphology+proton diffusion time-scale
- => possible sources near the center around

10 kyr (SNR Sgr A East or black hole Sgr A*)

• VHE y-rays emission via IC scattering of accelerated electrons No ! TeV electron would lose their energy rapidly due to intense photon field and high magnetic fields.

A microquasar: LS 5039

(compact object fed by a massive star)

- massive O6.5V star
- unidentified compact object

1.5 -> 5 M (casares et al. 2005)

- Orbital period ~3.9 days Inclination [15°,65°]?
- Eccentric orbit (e~0.3) binary separation 2->4.5 R_*

➔ binary system

• Radio emission possibly from jet (Paredes et al. 2000) extension ~1000 AU, v ~ 0.2 c

➔ microquasar

• Possible association with the MeV to GeV γ -rays sources :

CRO J1823-12 (Collmar 2003), 3EG 1824-1514 (Paredes et all. 2000)

indication of multi-GeV particles

LS 5039: HESS observations

LS 5039 only X/radio source in FoV

LS 5039: HESS results

LS 5039: HESS results

- VHE maximum flux with inferior conjunction (Star-compact object-observer alignment)
- VHE minimum flux with $\Phi \sim 0.2$

not compatible with a simple absorption model

LS 5039: HESS results and conclusions

• Strong spectral modulation $\Gamma = 2.53 \pm 0.07$ and $\Gamma = 1.85 \pm 0.06$ $E_{cut} = 8.7 \pm 2 \text{ TeV}$

- First periodic signal in TeV
- Emission region constraint
- Emission from jet disfavored
- Model : Absorption + production processes

Outline :

- H.E.S.S. Status 1
 - Calibration and Methods
 - Crab Nebula
- Galactic sources
- Extragalactic sources
 - E.B.L.
 - M87
- H.E.S.S. Status 2
 - Phase 2 of the project

Legend: discovered by H.E.S.S. seen by H.E.S.S.

Name	redshift	reference	
M 87	0.004	Aharonian et al, A&A, 403, L1 (2003)	
Markarian 421	0.030	Punch et al., Nature, 358, 477 (1992)	
Markarian 501	0.034	Quinn et al., ApJ, 456, L83 (1996)	
1ES 2344+514	0.044	Catanese et al., ApJ, 501, 616 (1998)	
Markarian 180	0.045	Albert et al., astro-ph/0606630 (2006)	
1ES 1959+650	0.047	Nishiyama et al., 29 th ICRC, 3, 370 (1999)	
PKS 2005-489	0.071	Aharonian et al, A&A, 436, L17 (2005)	
PKS 2155-304	0.116	Chadwick et al., ApJ, 513, 161 (1999)	
H 1426+428	0.129	Horan et al., ApJ, 571, 753 (2002)	
H 2356-309	0.165	Aharonian et al, Nature, 440, 1018 (2006)	
1ES 1218+304	0.182	Albert et al., ApJ, 642, L119 (2006)	
1ES 1101-232	0.186	Aharonian et al, Nature, 440, 1018 (2006)	
PG 1553+113	>0.25?	Aharonian et al, A&A, 448, L19 (2006)	

H2356-309, z=165

modified Julian date

- Most distant sources for which spectra have been measured at TeV energy
- Hard spectra
- Strong implications on Extragalactic Background Light (ELB)

EBL: Extragal. background light: TeV γ-absorption

 $F_{obs}(E) = F_{intr}(E) \times e^{-\tau(E)}$

1ES 1101-232

H 2356-309

Γ=2.0

Assumption: original spectrum index not harder than 1.5

 $\Gamma \ge 1.5$ does not need to change the known blazar physics scenario to agree with observations (SSC or proton acceleration)

The Giant Elliptical radiogalaxy M87

- Distance : z=0.00436 (~16 Mpc)
- Central BH
- Jet angle ~ 30°
 - ➔ not a blazar !
- First detection at TeV energies by HEGRA (2003, A&A, 403,L1)

M87 : HESS observations

Outline :

- H.E.S.S. Status 1
 - Calibration and Methods
 - Crab Nebula
- Galactic sources
- Extragalactic sources
- H.E.S.S. Status 2
 - Phase 2 of the project

A sample 5 TeV Hybrid HESS -I&II event

For the same energy, better definition of the shower image

2048 pixels ~ 3.5° Field of View

Same technology as HESS-I Same Physical PM size Angular pixel size ~0.07° Same NSB (Night-Sky Background)

Camera to fit in ~ cylinder r=1.9m, ϕ =2.5m, 3000 kg

Projected Performance for HESS-II and Hybrid

Coincidence Threshold in the region of 50 GeV

Standalone Threshold in the region of 20 GeV

HESS-2: Where are you today

- Steel Structure: company chosen
- Foundation: started soon
- PMTs: call of tender is opened, and will be closed on October 10th
- Camera Structure
- Electronic: ~same HESS-1 with better performances
- First light: middle of 2008

HESS-I functioning at full sensitivity since Dec. 2003

(only newest results have been presented)

Many exciting results coming, on various sources ... papers to follow
 Phase II in progress (mid. 2008)

Backup

SinglePE distribution

electronic noise : 0.18 p.e.

For each Pixel : $I(\phi) \propto \sin{(2\theta_c)} D(\phi) \epsilon$

Sky map (Crab nebula)

Filled circles represent points further from the source Gaussian fit : mean=0.04+/-0.006 sigma=0.98+/-0.004

Calibration Systems

In the shelter: LED: SinglePE distribution to monitor the gain

I<u>n the centre of the dish:</u> LED: to homogenize the PMT response

Muons:

to get the global optical efficiency

Pointing:

CCDs or stars in the f.o.v.

<u>Atmosphere:</u> Ceilometer, ... LIDAR in the future

Analysis Scheme

Samples of 20 GeV HESS-II events

10

