An upper limit to photons from first Auger data

Markus Risse

(Forschungszentrum Karlsruhe)

for the Pierre Auger Collaboration

Challenges in Particle Astrophysics 6th Rencontres du Vietnam, Hanoi, August 6-12, 2006

- UHE photons $>10^{19} \text{ eV}$
 - production, propagation; air showers
- **photon limit** (astro-ph/0606619)
 - method & cuts; first limit using X_{max}
- prospects
 - more data, ground array, Auger North vs South

There are 10²⁰ eV (= 100 EeV) events ! Origin ??

- acceleration models (astrophysics):
 - active galactic nuclei, gamma-ray bursts, ...
 - → not easy to reach >100 EeV; no obvious correlations

- non-acceleration models (particle physics):
 - super-heavy dark matter, topological defects
 - hypothetical massive objects produce normal particles
- to avoid GZK cut-off also for distant sources:
 - neutrinos in Z-Burst scenario (cosmology)
 - violation of Lorentz invariance (fundamental physics)

Super Heavy Dark Matter (SHDM)

- produced during inflation; $M_x \sim 10^{23}$ eV, clumped in galactic halo (overdensity ~10⁵)
- lifetime ~ 10^{20} y: decay (SUSY-QCD) => pions => UHE photons (and neutrinos)
- little processing during propagation: decay spectrum at Earth →

Berezinsky, Kachelrieß 1998; Birkel, Sarkar 1998; Ellis et al. 2005, Aloisio et al. 2006 ...

- photons dominate >50-80 EeV →
- similar shapes for ZB (Weiler 1982, ...) → and TD (Hill 1983, ...) models
- signature for exotics ! →

Acceleration models: "GZK photons"

• nucleons from astrophysical source (>100 EeV nucleons: $\lambda_{loss} \sim 50$ Mpc)

→ $N\gamma_{2.7} \rightarrow \Delta \rightarrow N\pi \rightarrow UHE$ ("GZK") photons (and neutrinos)

- pair production on ~MHz radio background (10-100 EeV photons: λ_{loss} ~3-15 Mpc)
 - note: multimessenger observations, complementary features !

```
UHE photons --- UHE neutrinos
```

Acceleration models: "GZK photons"

• nucleons from astrophysical source (>100 EeV nucleons: $\lambda_{loss} \sim 50$ Mpc)

→ $N\gamma_{2.7} \rightarrow \Delta \rightarrow N\pi \rightarrow UHE$ ("GZK") photons (and neutrinos)

• pair production on ~MHz radio background (10-100 EeV photons: λ_{loss} ~3-15 Mpc)

shaded region: source and propagation parameters varied (HiRes spectrum)

- typically <1%
- Auger North+South, photons/year: up to ~40 (>10 EeV), ~2 (>100 EeV)
- → absence of photons => constraints

-> air showers: how to "identify" photons?

GZK: Greisen; Zatsepin, Kuzmin 1966

Photon discrimination with X_{max}

- photons vs hadrons: ~200 g cm⁻² difference at 10¹⁹ eV
- slope (ΔX_{max} / per energy decade) is changing !?

Photon showers: high-energy effects

slope ~ 85 g cm⁻² / energy decade (-> toy model: equal energy splitting and λ_{rad})

Photon shower: LPM effect

- Landau, Pomeranchuk (1953), Migdal (1956)
- in matter: interference if formation length gets macroscopic
- pair production and bremsstrahlung cross-sections reduced:
 ~1/sqrt(ρE) (h.e. limit); larger air density -> stronger reduction
- asymmetric energy distribution favoured

Photon showers: preshower effect

- cascade in geomagnetic field before "normal" air shower
- depends on photon energy and arrival direction!

-> PRESHOWER code: Homola et al. 2005

Photon showers: preshower effect

- faster shower development, smaller fluctuations
- competition of LPM and preshower !
- precise calculations needed for individual event

-> experimental status ...

UHE photons: status in 2005

- cosmic-ray photon fraction: check non-acceleration models
- upper limits so far: **surface detectors only** !?
- needed: **cross-check by fluorescence technique** (X_{max} in *hybrids*)

Analysis overview (1)

Auger, astro-ph/0606619

• data set: 01/2004 - 02/2006 (150 -> 950 tanks, total 12 telescopes)

+

• hybrid reconstruction (geometry, energy, X_{max})

hybrid =

- quality cuts (but: bias to photons)
- fiducial volume cuts
- → 29 events above 10 EeV

reconstruction based on ...

- -> end-to-end calibration of telescopes (Brack et al. 2005)
- -> monitoring of local atmosphere (Roberts et al., Keilhauer et al. 2005)
 - monthly density profiles
 - average aerosol model
 - no clouds

Analysis overview (2)

Auger, astro-ph/0606619

• data set: 01/2004 - 02/2006 (150 -> 950 tanks, total 12 telescopes)

+

• hybrid reconstruction (geometry, energy, X_{max})

hybrid =

- quality cuts (but: bias to photons)
- fiducial volume cuts
- → 29 events above 10 EeV

- for each event: simulate photon X_{max} distribution (PRESHOWER+CORSIKA)
- compare data & simulation => (statistical method:) photon limit
- correction of limit for detector acceptance

Data cuts & bias to photons

→ after **trigger** ~OK: no large bias to photons

> quality cuts:

- d(axis-tank) < 1.5 km, dt(SD,FD) < 300 ns
- >5 phototubes triggered by shower
- profile fit: $\chi^2 / n < 6$
- χ^2 (Gaisser-Hillas) / χ^2 (line) < 0.9
- minimum viewing angle >15 deg
- X_{max} observed: necessary, but bias to photons !
- → X_{max} (~1000 g cm⁻²) below ground (~880 g cm⁻²) for near-vertical photons !
- → fiducial volume cuts ...

Data cuts & bias to photons

→ after **trigger** ~OK: no large bias to photons

→ quality cuts:

- d(axis-tank) < 1.5 km, dt(SD,FD) < 300 ns
- >5 phototubes triggered by shower
- profile fit: $\chi^2 / n < 6$
- χ^2 (Gaisser-Hillas) / χ^2 (line) < 0.9
- minimum viewing angle >15 deg
- X_{max} observed: necessary, but bias to photons !

> fiducial volume cuts:

 $\begin{array}{l} \theta > 35^{\circ} \ + \ g_1(E),\\ \text{with } g_1(E) = 10^{\circ} \cdot (\lg E/\text{eV}-19.0) \text{ for } \lg E/\text{eV} \leq 19.7, \text{ else } g_1(E) = 7^{\circ} \\ d \ (\text{eye-core}) \ <\!24 \ \text{km} \ + \ g_2(E), \end{array}$

- with $g_2(E) = 12$ km $\cdot (\lg E / eV 19.0)$.
- no large bias to photons, acceptance ~ flat
- minimum ratio (photon / nuclear primaries) ~ 0.80

Example of observed profile

- calorimetric energy from integration
- 1% missing energy correction, suitable for primary photons (*Pierog et al., 2005*)
 - → energy scale for photons
 - → *underestimates* slightly (~7-14%) energy of hadron primaries
 - → conservative photon limit! (data sample slightly *depleted* from hadron primaries)

• here: conservative estimate used for all 29 selected events

Data	$\Delta X_{ m max}^{ m stat} \ [{ m g} \ { m cm}^{-2}]$	$\Delta X_{\rm max}^{\rm syst} \ [{ m g cm}^{-2}]$		
Profile fit	20	10		
Atmosphere	12	8		
Geometry reconstruction	10	5		
Others	10	5		
Simulation			energy (input for photon simulation):	
Reconstructed energy of event	5	13 <	~25% syst. unc.	
Photo-nuclear cross-section	-	10		
Hadron generator	-	5 🚽	a big advantage	
Total	28	23	oj inis analysis!	

- well below photon shower fluctuations (~80 g cm⁻²)
- analysis not limited by measurement uncertainty

• event:
$$X_{max} = 780 \pm 28 \text{ (stat)} \pm 23 \text{ (syst) g cm}^{-2}$$

- photons: $\langle X_{max} \rangle = 1000 \text{ g cm}^{-2}$, rms = 71 g cm⁻²
- → observed X_{max} well below expectation for photons

The data set: overview

(astro-ph/0606619)

Event ID	Energy	$X_{\rm max}$	$\langle X_{\max}^{\gamma} \rangle$	ΔX_{\max}^{γ}	Δ_{γ}	IX _{max}	0.01	-	
	[x10 ¹⁰ eV]	[g cm ~]	[g cm ~]	[g cm ~]	[std. dev.]	N/d	0.008		
668949	17	765	985	71	2.9	P V			$ X_{max} $ range:
673409	12	760	996	82	2.7	1	0.006		$(70, 021, \dots, 2)$
705583	11	678	973	77	3.6		0.004		$6/8-831 \text{ g cm}^{-1}$
737165	202	821	948	27	3.3				
828057	13	805	978	68	2.4		0.002		
829526	12	727	996	85	3.0		0		
850018	54	774	1050	120	2.2		U	650 700 750 800 850 9	00
931431	24	723	1022	89	3.2			X _{max} (g cm ⁻)
935108	14	717	992	68	3.8		_		_
986990	15	810	1000	87	2.1	∕d∆	1		
1109855	16	819	1019	95	2.0	ND	1		
1171225	15	786	993	74	2.6	3	0.8		nhoton va data
1175036	17	780	1001	100	2.1		0.6		photon vs data
1257649	10	711	971	76	3.2				2.0-3.8 st.dev.
1303077	13	709	992	85	3.1		0.4		
1337921	18	744	1029	93	2.9		0.2		
1421093	25	831	1028	93	2.0		0		
1535139	15	768	998	77	2.8		0	0.5 1 1.5 2 2.5 3 3.5 4 4.5	5
1539432	12	787	975	76	2.3				Δ_{γ}
1671524	13	806	978	77	2.1			$< X_{\gamma}^{\gamma} = -X_{max}$	
1683620	20	824	1035	80	2.5			$\Delta_{\gamma} = \frac{\langle \mathbf{M}_{\text{max}} \rangle - \mathbf{M}_{\text{max}}}{\sqrt{\langle \mathbf{A}, \mathbf{V}^{\gamma} \rangle^2 + \langle \mathbf{A}, \mathbf{V}_{\text{stat}} \rangle^2}}$	
1683856	18	763	981	92	2.3			$\sqrt{(\Delta X_{\rm max})^2 + (\Delta X_{\rm max}^{\rm stat})^2}$	
1684651	12	753	991	79	2.8				
1687849	16	780	1001	71	2.9		_		10-10
1736288	10	726	981	71	3.3		→]	probability (29x photons)	<< 10 ⁻¹⁰
1826386	17	747	994	84	2.8				
1978675	10	740	978	76	2.9		→	set limit to photon fraction	า
2035613	11	802	998	90	2.1		L		•
2036381	27	782	1057	101	2.6				

Statistical treatment

• account for events statistics, shower fluctuations and shower properties changing with primary energy and arrival direction (-> *MR et al.*, *PRL 2005*)

Statistical treatment

- account for events statistics, shower fluctuations and shower properties changing with primary energy and arrival direction (-> *MR et al.*, *PRL 2005*)
- chance probability for hypothetical F_{γ} to get χ^2 values \geq than found in data:

$$P(F_{\gamma}) = \sum_{\substack{n_{\gamma}=0\\n_{\gamma}=0}}^{n_{m}} q(F_{\gamma}, n_{\gamma}, n_{m}) \cdot p_{\gamma}(n_{\gamma}) \cdot p_{\overline{\gamma}}(n_{m} - n_{\gamma})$$
probability that ...
$$\dots n_{\gamma}$$
 "photons"
$$yield \chi^{2} values \\ \ge than in data$$

$$q(F_{\gamma}, n_{\gamma}, n_{m}) = F_{\gamma}^{n_{\gamma}}(1 - F_{\gamma})^{n_{m} - n_{\gamma}}\binom{n_{m}}{n_{\gamma}})$$

$$p_{\overline{\gamma}}(n_{m} - n_{\gamma}): \text{ are set to unity (no test on "non-photons")}$$

$$x_{j}^{2} = \frac{(X_{\max}^{j} - \langle X_{\max}^{j} \rangle)^{2}}{(\Delta X_{\max}^{j})^{2} + (\Delta X_{\max}^{j})^{2}}$$

$$p_{\gamma}(n_{\gamma}) : \text{ take } n_{\gamma} \text{ most photon-like looking events } = \sum_{\substack{n_{\gamma}\\j=1}}^{n_{\gamma}} \chi_{k_{i}}^{2} \text{ is minimal;}$$

$$determine \quad p_{\gamma}(\chi^{2} \ge \sum_{j=1}^{n_{\gamma}} \chi_{k_{i}}^{2}) \text{ with MC technique (non-Gaussian fluct.)}$$

→ with confidence 1-P(F_{γ}), photon fractions $\geq F_{\gamma}/\epsilon$ can be rejected ϵ =0.80: efficiency correction from photon acceptance (conservative: minimum ratio)

Auger photon limit

- **16% upper limit** (95% c.l.) to cosmic-ray photon fraction
- confirms and improves on previous limits above 10^{19} eV

Prospects (1): same method, more data

- factor ~10 more hybrid data within 2-3 years
- assume similar X_{max} distribution as observed so far
- sensitivity down to photon fractions of $\sim 5\%$ above 10 EeV
- → similar statistics and sensitivity as now ($\sim 16\%$) above 30-35 EeV

Prospects (2): data from ground array

- here: array only for geometry reconstruction in *hybrids*
- for \geq 3 detectors, standard array reconstruction possible; e.g.:
 - → risetime of detector signal at 1000 m core distance

- *caveat*: acceptance and energy reconstruction of photons
- work in progress

probability for preshower from UHE photons at ...

Auger North (Colorado): full sky coverage

also: *magnetic fields differ* between Auger South and North *preshower characteristics of UHE photons differ !*

probability for preshower from UHE photons at ...

probability for preshower from UHE photons at ...

preshower at North ...

... **"starts" at smaller energy** (factor 2 stronger field)

shift of sky pattern (different field direction)

probability for preshower from UHE photons at ...

preshower at North ...

... **"starts" at smaller energy** (factor 2 stronger field)

shift of sky pattern (different field direction) **"ends" at higher energy** (field line less curved)

Auger North and South: take local northern sky

- → here: more converted photons at Auger North
- smaller X_{max} + rms
- opposite for other sky regions
- → same cuts, different signal
- → if photons at Auger South, possible confirmation with Auger North using preshowering

Conclusions

• UHE photons

- "smoking gun" for *exotic scenarios*
- at a smaller level, GZK photons expected
- Auger data analysis
 - careful study of cuts and possible bias to photons
- 16% upper limit (95% c.l.) to photon fraction $>10^{19} \text{ eV}$
 - first photon limit using fluorescence technique (X_{max})
 - confirms and improves (factor ~2) on previous limits from arrays
- prospects for photons are bright at Auger ...
 - hybrid statistics: factor ~10 within ~2-3 years
 - array alone: factor ~10 more data (work in progress)
 - Auger North vs South: complementary search for UHE photons

Acceptance correction

diff. fluxes $\Phi_{\gamma}(E), \Phi_i(E), i = p, He, ...$

We want: upper limit UL to true photon fraction above E_0 : $UL > F_{\gamma} = \int_{E_0} \Phi_{\gamma}(E) dE / (\int_{E_0} \Phi_{\gamma}(E) dE + \sum_i \int_{E_0} \Phi_i(E) dE)$

however, from data: upper limit UL' to measured fraction :

$$F_{\gamma}' = \int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE / \left(\int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE + \sum_i \int_{E_i} A_i(E) \Phi_i(E) dE \right)$$

with acceptances $A_{\gamma}(E), A_i(E),$ and effective threshold $E_i = E_0 \cdot \frac{m_i}{m_{\gamma}}$, (missing energies m_{γ}, m_i)

 \Rightarrow need correction ϵ such that $UL'/\epsilon = UL > F_{\gamma}$

Acceptance correction

Upper limit UL' to measured fraction :

$$\begin{split} UL' &> \int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE / (\int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE + \sum_i \int_{E_i} A_i(E) \Phi_i(E) dE) \\ &\text{Since } E_i = E_0 \cdot \frac{m_i}{m_{\gamma}} > E_0, \text{ with } m_{\gamma} \simeq 1.01, m_i \simeq 1.07 - 1.14: \\ &> \int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE / (\int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE + \sum_i \int_{E_0} A_i(E) \Phi_i(E) dE) \\ &\text{Define efficiency ratio } \epsilon_i(E) = A_{\gamma}(E) / A_i(E): \\ &= \int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE / (\int_{E_0} A_{\gamma}(E) \Phi_{\gamma}(E) dE + \sum_i \int_{E_0} \frac{A_{\gamma}(E)}{\epsilon_i(E)} \Phi_i(E) dE) \\ &\text{With } A_{\gamma} \simeq \text{const (fiducial volume cuts!):} \\ &\simeq \int_{E_0} \Phi_{\gamma}(E) dE / (\int_{E_0} \Phi_{\gamma}(E) dE + \sum_i \int_{E_0} \frac{1}{\epsilon_i(E)} \Phi_i(E) dE) \\ &\text{Take minimum ratio } \epsilon_{\min} \simeq 0.80 \le \epsilon_i(E): \\ &> \int_{E_0} \Phi_{\gamma}(E) dE / (\int_{E_0} \Phi_{\gamma}(E) dE + \frac{1}{\epsilon_{\min}} \sum_i \int_{E_0} \Phi_i(E) dE) \\ &\text{Since } 1/\epsilon_{\min} > 1: \\ &> \int_{E_0} \Phi_{\gamma}(E) dE / (\frac{1}{\epsilon_{\min}} \int_{E_0} \Phi_{\gamma}(E) dE + \frac{1}{\epsilon_{\min}} \sum_i \int_{E_0} \Phi_i(E) dE) \\ &= \epsilon_{\min} \int_{E_0} \Phi_{\gamma}(E) dE / (\int_{E_0} \Phi_{\gamma}(E) dE + \sum_i \int_{E_0} \Phi_i(E) dE) \\ &= \epsilon_{\min} \int_{E_0} \Phi_{\gamma}(E) dE / (\int_{E_0} \Phi_{\gamma}(E) dE + \sum_i \int_{E_0} \Phi_i(E) dE) \\ &= \epsilon_{\min} \cdot F_{\gamma} \end{split}$$

 $\Leftrightarrow UL = UL' / \epsilon_{\min} > F_{\gamma} \quad (\text{conservative})$

Conservative correction for detector acceptance

- -> limit independent of specific input spectra !
- -> for given model, (smaller) correction can be calculated.

Not much smaller, since epsilon_min~0.8