Flavours for leptogenesis

Alejandro Ibarra IFT, Madrid

Based on hep-ph/0605281, in collaboration with Asmaa Abada, Sacha Davidson, Francois-Xavier Josse-Micheaux

Marta Losada and Antonio Riotto.

(see also talk by Yossi Nir)

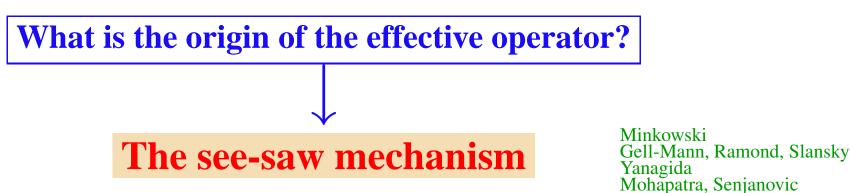
Rencontres du Vietnam Hanoi, Aug 2006

Introduction

★ Neutrino masses can be described by adding a dimension five operator to the Standard Model lagrangian:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} - \frac{1}{2} \kappa_{\alpha\beta} (\ell_{\alpha} \cdot H)^T (\ell_{\beta} \cdot H) + h.c.$$
 Weinberg

so that after the electroweak symmetry breaking $\mathcal{M}_{\nu} = \kappa_{\alpha\beta} \langle H^0 \rangle^2$



 \star Add to the SM three right-handed neutrino fields

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \nu_R^c{}^T \lambda \,\ell \cdot H - \frac{1}{2} \nu_R^c{}^T \mathcal{M} \,\nu_R^c + h.c.$$

If $M_i \gg \langle H^0 \rangle$ the right-handed neutrinos decouple and the theory is well described by \mathcal{L}_{eff} with

$$\kappa_{\alpha\beta} = \lambda^T \mathcal{M}^{-1} \lambda$$

Naturally suppressed!!

 \star <u>EXTRA BONUS</u>: natural mechanism to explain the baryon asymmetry of the Universe

$$Y_{\mathcal{B}} = \frac{(n_{\mathcal{B}} - n_{\bar{\mathcal{B}}})}{s} \simeq 9 \times 10^{-11}$$

LEPTOGENESIS

(Fukugita, Yanagida)

① Generation of RH-neutrinos

2 Decay of RH-neutrinos at high T. This creates a lepton asymmetry

$$Y_{\mathcal{L}} = \frac{n_{\ell} - n_{\bar{\ell}}}{s} = \frac{n_{\nu_R} + n_{\tilde{\nu}_R}}{s} \epsilon_1 \kappa$$
$$\epsilon_1 = \frac{1}{8\pi} \sum_{j \neq 1} \frac{\operatorname{Im}\left[(\lambda \lambda^{\dagger})_{j1}^2\right]}{(\lambda \lambda^{\dagger})_{11}} g\left(\frac{M_j^2}{M_1^2}\right)$$

3 Conversion of a L-asymmetry into a B-asymmetry (sphaleron processes)

$$Y_{\mathcal{B}} = -\frac{28}{51}Y_{\mathcal{L}}$$
 (in the Standard Model)

Is it justified to talk about <u>a</u> lepton asymmetry, when in fact there are <u>three</u> flavours? Yes, but only when $T \gtrsim 10^{12}$ GeV. Barbieri, Creminelli, Strumia, Tetradis Fujihara,Kaneko, Kang, Kimura, Morozumi, Tanimoto Nardi, Nir, Roulet, Racker Abada, Davidson, Josse-Michaux,Losada, Riotto When $T \lesssim 10^{12}$ GeV (or $M_1 \lesssim 10^{12}$ GeV) the one flavour description is **not** correct, and we have to deal with different flavour asymmetries, a set of flavoured Boltzmann equations, etc.

The reason is that when $T \lesssim 10^{12}$ GeV charged lepton Yukawa interactions are in thermal equilibrium, and break the coherent evolution of the lepton doublets ℓ_i between $\not{\!\!\!\!\!\!\!\!}$ interactions \longrightarrow below $T \sim 10^{12}$ GeV flavours are distinguishable. Every leptonic flavour asymmetry evolves differently!!

The total lepton asymmetry in the one flavour approximation

$$Y_{\mathcal{L}} = \frac{n_{\nu_R} + n_{\tilde{\nu}_R}}{s} \epsilon_1 \kappa = \frac{n_{\nu_R} + n_{\tilde{\nu}_R}}{s} \left(\epsilon_e + \epsilon_\mu + \epsilon_\tau\right) \left(\kappa_e + \kappa_\mu + \kappa_\tau\right)$$

has to be substituted by

$$Y_{\mathcal{L}} = \frac{n_{\nu_R} + n_{\tilde{\nu}_R}}{s} \left(\epsilon_e \,\kappa_e + \epsilon_\mu \,\kappa_\mu + \epsilon_\tau \,\kappa_\tau\right)$$

Furthermore, the equilibrium conditions for the asymmetries in the number densities are different depending on T. The relation $Y_{\mathcal{B}} = -\frac{28}{51}Y_{\mathcal{L}}$ also has to be modified.

Three regimes:

- $T \lesssim 10^9 \text{GeV}$ Tau and muon Yukawa interactions are in equilibrium \longrightarrow All the three flavours are distinguishable.
- $10^9 \text{GeV} \lesssim T \lesssim 10^{12} \text{GeV}$ Only the tau Yukawa interactions are in equilibrium \longrightarrow tau is distinguishable, but μ and e aren't.
- $T \gtrsim 10^{12} \text{GeV}$ No charged lepton Yukawa interactions are in equilibrium \longrightarrow All the flavours are indistinguishable, and the one flavour approximation is valid.

 $T \lesssim 10^9 {
m GeV}$ Tau and muon Yukawa interactions are in equilibrium.

Three distinguishable flavours

\star Three different lepton asymmetries ($\alpha = e, \mu, \tau$):

$$\epsilon_{\alpha} \equiv \frac{\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) - \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})}{\sum_{\alpha} [\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) + \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})]} = \frac{1}{(8\pi)} \frac{1}{(\lambda\lambda^{\dagger})_{11}} \sum_{j} \operatorname{Im} \left\{ (\lambda_{1\alpha})(\lambda\lambda^{\dagger})_{1j}\lambda_{j\alpha}^{*} \right\} g\left(\frac{M_{j}^{2}}{M_{1}^{2}}\right)$$

$$\left(\text{instead of } \epsilon_{1} \equiv \frac{\sum_{\alpha} [\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) - \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})]}{\sum_{\alpha} [\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) + \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})]} \right)$$

★ Three different Boltzmann equations (instead of one)

$$Y'_{\alpha} = \epsilon_{\alpha} K z \, \frac{K_1(z)}{K_2(z)} f_1(z) \Delta_{N_1} - \frac{1}{2} z^3 K_1(z) \, f_2(z) \, K_{\alpha} Y_{\alpha}$$

★ Sphaleron processes yield

$$Y_{\mathcal{B}} = -\frac{12}{37} \left(\frac{40}{13} Y_e + \frac{51}{13} Y_{\mu} + \frac{51}{13} Y_{\tau} \right)$$

(instead of $Y_{\mathcal{B}} = -\frac{28}{51} Y_{\mathcal{L}}$)

 $10^9 {
m GeV} \lesssim T \lesssim 10^{12} {
m GeV}$ Only the au Yukawa interactions are in

equilibrium.

Two distinguishable flavours

 $(\tau, \text{ and a combination of } \mu \text{ and e})$

\star Two different lepton asymmetries ($\alpha = \tau$ and $\alpha = 2$, the combination of e and μ):

$$\epsilon_{\alpha} \equiv \frac{\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) - \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})}{\sum_{\alpha} [\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) + \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})]} = \frac{1}{(8\pi)} \frac{1}{(\lambda\lambda^{\dagger})_{11}} \sum_{j} \operatorname{Im} \left\{ (\lambda_{1\alpha}) (\lambda\lambda^{\dagger})_{1j} \lambda_{j\alpha}^{*} \right\} g\left(\frac{M_{j}^{2}}{M_{1}^{2}}\right)$$

$$\left(\text{instead of } \epsilon_{1} \equiv \frac{\sum_{\alpha} [\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) - \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})]}{\sum_{\alpha} [\Gamma(\nu_{R_{1}} \to H\ell_{\alpha}) + \Gamma(\nu_{R_{1}} \to \bar{H}\bar{\ell}_{\alpha})]} \right)$$

★ Three different Boltzmann equations (instead of one)

$$Y'_{\alpha} = \epsilon_{\alpha} K z \, \frac{K_1(z)}{K_2(z)} f_1(z) \Delta_{N_1} - \frac{1}{2} z^3 K_1(z) \, f_2(z) \, K_{\alpha} Y_{\alpha}$$

 \star Sphaleron processes yield

$$Y_{\mathcal{B}} = -\frac{12}{37} \left(\frac{115}{36} Y_2 + \frac{37}{9} Y_\tau \right)$$

(instead of $Y_{\mathcal{B}} = -\frac{28}{51} Y_{\mathcal{L}}$)

The case of the see-saw model with two right-handed neutrinos: an illustration of the impact of flavour on leptogenesis.

★ Observations tell us that at least two new mass scales have to be introduced $(\Delta m_{sol}^2, \Delta m_{atm}^2)$. Two right-handed neutrinos can do the job.

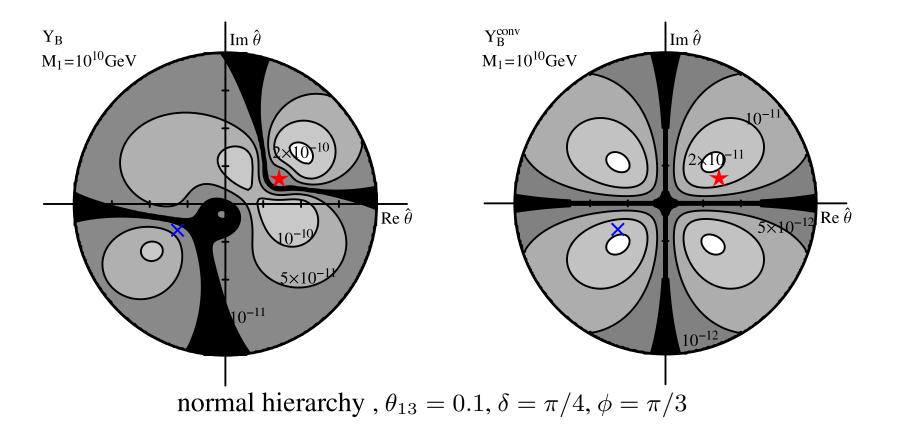
★ At high-energies the model is defined by two right-handed neutrino masses and a 2×3 Yukawa matrix. In total, there are 8 real parameters and 3 phases. On the other hand, at low energies we can measure two masses, three mixing angles, and two phases. There is in the high-energy parameters an ambiguity of 3 real parameters and one phase, that can be expressed as:

$$\lambda = D_{\sqrt{\mathcal{M}}} R D_{\sqrt{m}} U^{\dagger} / \langle H^0 \rangle$$

with

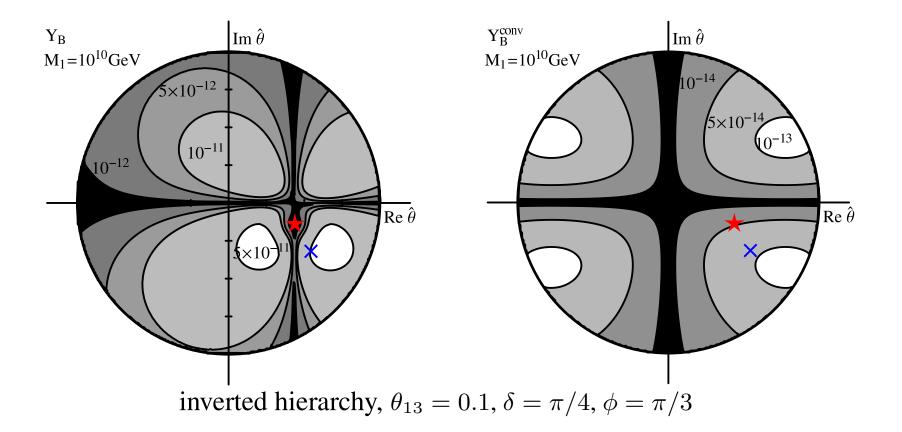
$$R = \begin{pmatrix} 0 & \cos \hat{\theta} & \xi \sin \hat{\theta} \\ 0 & -\sin \hat{\theta} & \xi \cos \hat{\theta} \end{pmatrix} \qquad R = \begin{pmatrix} \cos \hat{\theta} & \xi \sin \hat{\theta} & 0 \\ -\sin \hat{\theta} & \xi \cos \hat{\theta} & 0 \end{pmatrix}$$

normal hierarchy inverted hierarchy
The ambiguity of the parameters at high energy is encoded in M_1 , M_2 , and $\hat{\theta}$.



The differences are maximal:

- Along the axes: R is real or pure imaginary. In the one flavour approximation, $\epsilon_1 \propto \text{Im} \sin^2 \hat{\theta}$
- Around texture zeros in the neutrino Yukawa matrix $\begin{array}{l} \star \lambda_{13} = 0 \\ \times \lambda_{12} = 0 \end{array}$ The asymmetry in the corresponding flavour is only weakly washed-out



The differences are maximal:

- Along the axes: R is real or pure imaginary. In the one flavour approximation, $\epsilon_1 \propto \text{Im} \sin^2 \hat{\theta}$
- Around texture zeros in the neutrino Yukawa matrix $\begin{array}{l} \star \lambda_{13} = 0 \\ \times \lambda_{12} = 0 \end{array}$ The asymmetry in the corresponding flavour is only weakly washed-out

Conclusions

 \star The observation of neutrino masses gives strong support to leptogenesis as the mechanism to generate the baryon asymmetry of the Universe.

★ If leptogenesis occurs at $T \leq 10^{12}$ GeV, a rigurous treatment of leptogenesis requires to include flavour effects.

 \star The effect of flavour on leptogenesis is not only conceptually important, but also quantitavely important when computing predictions from particular models.