

August 9, 2006@6th Recontres du Vietnam, Hanoi

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer

Condles Challenge on ⁴⁸Ca enrichment for CANDLES double beta decay experiment ~Separation with a crown ether~

Ryuta Hazama Hiroshima University

Nobel Prize

Pedersen@1962

Cram&Lehn@1987

Double beta decay of ⁴⁸Ca

- Largest Q value (4.27 MeV)
 - next largest ¹⁵⁰Nd (3.3 MeV)
 - Large phase space factor
 - Least background (γ : 2.6 MeV, β : 3.3 MeV)

Isotope	⁴⁸ Ca	⁷⁶ Ge	⁸² Se	¹⁰⁰ Mo	¹¹⁶ Cd	¹³⁶ Xe	¹⁵⁰ Nd
Q-value (MeV)	4.27	2.04	3.00	3.03	2.80	2.48	3.37
G _{0v} × 10 ⁻²⁵ (year ⁻¹ eV ⁻²)	2.44	0.244	1.08	1.75	1.89	1.81	8.00

- Next generation
 - $M_{\nu} \propto 1/T^2 \propto M^2$ if background free
 - $M_{\nu} \propto 1/T^2 \propto M^4$ if background limited
- ⁷⁶Ge experiment (already seen backgrounds)
- ⁴⁸Ca (no backgrounds seen) large Q value

Mile stone

NPA 730 '04, 215

 $T_{1/2}^{0\nu\beta\beta} > 4.5 \times 10^{22}$ year (68% C.L.)

- ELEGANTS VI >1.4×10²² year (90% C.L.) - World Best Value(⁴⁸Ca:6.4g) $\langle m_{\nu} \rangle < 7.2 \sim 44.7 \text{ eV}$ (90% C.L.)
- CANDLES I, II (proof of principle;4 π active&FWHM~4%@Q)
- CANDLES III (construction completed@ Osaka lab.)
 - $CaF_2(10cm^3)$ 200kg:sea level, 300 kg; Kamioka
 - ~30 μ Bq/kg for ~0.5 eV

• CANDLES IV

- 15cm³ cube (600 crystals) 6.4t(⁴⁸Ca:6kg); Kamioka
- $\sim 3 \mu Bq/kg$ for $\sim 0.1 \text{ eV}$ in 6 years
- CANDLES V
 - 100t; SNO or Kamland or ... for ~30meV in 7years

– achieved

⁴⁸Ca enrichment

- Natural abundance $\rightarrow 0.187\%$
 - Enriched isotope
 - → expensive (elemag. separator;calutrons)
 - ~200K\$/g ~10g × 2 (in the world)
 - →no gaseous compounds
 - at room temp.
 - Gas centrifuge

I		175	1.00				1.00	T	T	VIIIo	T	V	Ш	
н	1	П	III	Г	V	v	VI	V	u	2 He				
Li	3	4 Be	5 B	с	6	7 N	8	F	9	10 Ne				·
) Na	1	12 Mg	13 Al	l Si	4	15 P	16 S		7	18 Ar				
I K	9	20 Ca	21 Sc	2	2 11	23 V	24 Cr	2 M	5 In	'	2	6	27 Co	28 Ni
· 2	9 .u	30 Zn	31 Ga	G	2	33 As	34 Se	3 Br	5	36 Kr				
3 Ri	1	38 Sr	39 Y	Zr	-0	41 Nb	42 Mo	4 To	3		4 Ru	4 R	45 b	46 Pd
4	7	48 Cd	49 In	5 Sn	0	51 Sb	52 Te	5	3	54 Xe		T		
5 Cs	5	56 Ba	57 *La	7	2 ff	73 Ta	74 W	7 R	5		20	6	77 lr	78 Pt
7 A	9 u	80 Hg	81 .TL	8 Pb	2	83 Bi	84 Po	At 8	5	86 Rn				
8 Fr	7	88 Ra	89 **Ac	10 Ku	4	105 Ns					T			
*	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Td	66 Dy	67 Ho	68 Er	69 Tu	70 Yb	71 Lu
**	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Bk	100 Fm	101 Md	102 No	103 Lr

Elements separated into isotopes with gas centrifuges -

A.I.Karchevski

 $\beta\beta$ isotopes; ⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd etc.

Technologies for isotope production for Ca

Separation technology	Field of use	Production per year	Cost
Electromagnetic (mass-spectroscopy effect)	universal	tens of grams	high
Chemical & phys. processes (rectification, chem. exchange etc)	light elements	tons	low
Gas diffusion	elements forming gas compounds	thousands of tons	middle
Gas centrifuge	elements forming gas compounds	thousands of tons	low
Laser (optical) separation	elements having isotope shift of spectrum lines	kilograms	middle
Plasma ion-cyclotron effect (under developing – the USA, Russia)	universal	hundreds of kilograms	middle

Find a cost-effective & efficient way of enrichment!!!

Unique Property of Crown Ether Complexing of cations(anions) by neutral molecules is an uncommon phenomenon. Stability is $\sim 10^4 \times \text{no-ring(crown)}$

•Held by electrostatic attraction between negatively charged O⁻ of the C-O dipoles & cation (Ca²⁺)

•How well the cation fits into the crown ring

•Liquid(aq-salt)-liquid(org-crown)

extraction in isotopic equilibrium

 The mean square Nuclear charge radius of Ca

Two doubly magic isotopes; A parabolic behavior L.Vermeeren et al., -01 J.Phys.G,22(1996)1517

Ca	⁴⁰ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁶ Ca	⁴⁸ Ca
isotope						
abundan ce(%)	96.9	0.65	0.135	2.09	0.004	0.187

6<r² < 40.A (fm²)

Ca Isotope effects~Separation Principle

 $^{40}Ca^{2+}(aq) + ^{48}CaL^{2+}(org)$ $^{48}Ca^{2+}(aq) + ^{40}CaL^{2+}(org)$

DC18C6: Aldrich Chemical, 98.0% CHCl₃:Nakarai Tesque, 99.0% CaCl₂:Nakarai Tesque, 95.0%

Solvent Extraction process

- 1.vacant extraction to reduce impu.
- 2.mixed & stirred for 1 hour
- 3. standing for 1 hour @7°C
- 4. LLE iterated 6 times Magnetic Stirr B.E.Jepson&R.Dewitt, J. Inorg.nucl.Chem38(1976)1175

Major background molecular ions formed from the Ar Plasma, nebulized water and dissolved/contained air.

	Mass	Molecular ion	isotopic ratio(%)	required resolution
$\sim l \pi$	40	^{40}Ca	99.941	-
II /Z	40	$^{40}\mathrm{Ar}$	99.6	192498
	42	42 Ca	0.647	1 = 12000
	42	${ m H}_2^{40}{ m Ar}$	99.57	resolut 2162
	43	$^{43}\mathrm{Ca}$	0.135	-
	43	$ m ^{86}Sr^{2+}$	9.86	10392
	43	$^{42}\text{CaH}^+$	0.6469	5597
	43	$^{40}\mathrm{Ar3H}$	0.0298	1683
	44	$^{44}\mathrm{Ca}$	2.086	-
	44	$^{88}\mathrm{Sr}^{2+}$	82.58	16448 🗙
	44	CO_2	98.43	1280
	44	$^{14}\mathrm{N}_{2}^{16}\mathrm{O}$		
	48	$^{48}\mathrm{Ca}$	0.187	
	48	$^{48}\mathrm{Ti}$	73.8	10457 Enen
	48	$^{36}\mathrm{Ar^{12}C}$	0.333	2447

How to measure ⁴⁰Ca?

1. TIMS(TRITON Thermo Electron) Only four TRITONs in Japan No-Ar 2. Reaction(collision)-cell ICPMS Perkin Elmer ELAN-DRCII@Kochi Univ. Q inside reaction-cell allows use of ammonia \rightarrow can avoid interference of Ar by reaction-gas Simple collision-cell must use simple $gas(H_2, He)$ to limit adverse side reaction

⁴⁰Ca,⁴⁸Ca are doubly magic \rightarrow A parabolic behavior

Nuclear mass effect > Nuclear size&shape effect!!! This is crucial asset to realize ${}^{48}Ca$ enrichment (from ${}^{40}Ca$)

How small?

Evaluate each isotope effects by 3 measured $\varepsilon(=1-\alpha)$ $\varepsilon_{40-48}, \varepsilon_{43-48}, \varepsilon_{44-48}$ $\varepsilon_{43-48} = a(\Delta M/MM')_{43-48} + b\delta < r^2 >_{43-48} + (\ln K_{hf})_{43}$

Nuclear mass effect Nuclear size&shape effect Hyperfine splitting(spin)

	$CaLCI_2$ Si	$LCl_2 CrLCl_3$
	$b\delta < r^2 > /[a(\triangle M/$	(MM')] $lnK_{hf}/[a(\Delta M/MM')]$
$^{40}\mathrm{Ca}-^{48}\mathrm{Ca}$	$0.02 {\pm} 0.48$	field shift effect is small!
$^{44}\mathrm{Ca}{-}^{48}\mathrm{Ca}$	0.62 ± 1.31	_
$^{43}\mathrm{Ca}{-}^{48}\mathrm{Ca}$	0.22 ± 0.88	$0.64{\pm}1.35$
$^{50}\mathrm{Cr}-^{52}\mathrm{Cr}$	1.12 ± 2.79	almost identical-effect
$^{54}\mathrm{Cr}-^{52}\mathrm{Cr}$	$-2.81{\pm}5.97$	_
$^{53}\mathrm{Cr}-^{52}\mathrm{Cr}$	-2.05 ± 8.94	-0.83 ± 6.17
C 1 (° 11 1	• • • • • • • • • • • • • • • • • • • •	

If the field shift effect is dominat, this method is not effective for Ca.

Comparison

Summary of previously achieved(measured:known) calcium Table 1: enrichment. LLC(liquid-liquid chromatography), DC18C6((polyether) dicyclohexyl 18-crown-6), HDEHP(di(2-ethylhexyl) orthophosphoric acid), SLC(solid-liquid-chromatography), LIS(laser isotope separation), MCIRI(Magnetic Cyclotron Ion Resonance of Isotopes)

4 0000	separation factor	process	ref.(manufacturer)
1.0020	$1.012\pm0.005~(\alpha_{12}^{48})$	LLC(DC18C6)	Osaka RI-center and WERC
1.0028	$1.014 \pm 0.006 (\alpha_{43}^{48})$	LLC(DC18C6)	Osaka RI-center and WERC
1.0010	$1.0080 \pm 0.0016^{\dagger} (\alpha_{40}^{48})$	LLC(DC18C6)	
1.0007	$1.0029 \pm 0.0006 \ (\alpha_{44}^{48})$	LLC(HDEHP)	
	$1.0013 {\pm} 0.0003$	LLC(amalgam(Hg))	
	$1.000043 \sim 1.000034$	SLC(ion-exchange)	
	$1.00026 \ (\alpha_{40}^{47})$	SLC(ion-exchange)	[ə]rəşin(Dowex)
	$1.00021 \ (\alpha_{40}^{44})$	SLC(ion-exchange)	[6]resin(Dowex)
	$1.00087 \pm 0.00008 \ (\alpha_{40}^{48})$	SLC(ion-exchange)	$[7]$ NH ₄ α -hydroxyisobutyrate&(Dowex)
1.0010	$1.0041 \pm 0.0004 \ (\alpha_{40}^{44})$	SLC(ion-exchange)	[8] iminodiacetate&resin(ANKB-50)
	$1.00013 {\sim} 1.00087^{\sharp}$	SLC(ion-exchange)	[9](TIT)resin(PK-1),Counter-Current
	$1.00016 \sim 1.00037 (\alpha_{40}^{48})$	SLC(ion-exchange)	[10](Sophia) resin(Asahi LS-6)
	$1.00018 \ (\alpha_{40}^{48})$	SLC(ion-exchange)	[11]resin(AG50WX4)
	$1.00049 \sim 1.00013 \ (\alpha_{40}^{44})$	SLC(ion-exchange)18C6	[12]resin(AG50WX4)
1.0010	$1.0039 \pm 0.0002 \ (\alpha_{40}^{44})$	$SLC(eyptand 2_B.2.2)$	[13] INEED TO VERILY DY
1 0006	$1.0025 \pm 0.0003 \ (\alpha_{40}^{44})$	SLC(18C6)	
1.0000	$1.00011 \pm 0.00003 \ (\alpha_{40}^{44})$	SLC(iminodiacetate)	^[13] Drecise TIMS &
1.0009	$1.0035 \pm 0.0003 \ (\alpha_{40}^{44})$	SLC(18C6+dimethyl sulfoxide)	
1 0006 1 0012	$1.0045 \sim 1.0104 (\alpha_{40}^{48}) $ §	$SLC(cryptand 2_B.2.2)$	^[15] More iterate LLF
1.0000~1.0013	-	LIS(LLNL)	a few $\text{mg}(\text{MM/kg})$ for 43 Ca [16]
	20%	MCIRI	$5 \text{kg/day} \rightarrow 10 \text{g/day} (0.7 \text{K})^* [17]$
	$65.3 \sim 95.7\%$	carbonate or oxide	TRACE Science Int. [18]
	$6\%\%~(\alpha_{40}^{44})$	chemical diffusion [‡]	[19]

[†] 0.185% $\rightarrow 10\%$ for 1kg/yr by Counter current distribution method.

~800 iteration $^{\sharp}$ 0.185% $\rightarrow 0.226\%^{\sharp}$ after 5 weeks, yielding 144mg of the enriched calcium(1.4g/yr). § In a preliminary experiment, they could isolate 30mg of calcium in which

 $^{48}\mathrm{Ca}$ was enriched by 3.3 % at 0°C from 210mg of natural abundant calcium.

 $0.187 \rightarrow 2.0\%$ This corresponds to 3.7kg/yr(¥0.7M/kg). Current cost of product at "elec-

tromagnetic" (aka calutrons at ORNL) separation $\sim 200 \text{K}/\text{g}(\text{}200 \text{M}/\text{kg})$.

Fig. 1 Photographs showing glass microchip and liquid–liquid interface No-stirring, Fast!! formed inside the microchannel.

Fig. 3 Reaction conditions and results obtained with phase transfer diazocoupling reaction under microscale and macroscale conditions.

Microchip with Holder

Summary

- CANDLES III construction almost completed.
- The **preliminary** <u>largest separation factor</u> of Ca by LLE using DC18C6 is suggested.**This still needs to be checked** by TIMS, temp.&

concentration dependence.

• We evaluated each contribution ratio of the field shift/hyperfine splitting shift effect to the mass effect of Ca for the 1st time.

The contributon of <u>the field shift effect is small</u>, <u>especially for ⁴⁰Ca-⁴⁸Ca</u>, compared with Cr.

• These indications are promissing towards the mass production of enriched ⁴⁸Ca by the chemical separation method with the help of <u>resins and/or</u> <u>microchannel chip</u>.

Y. Fujii, Y. Sakuma, M. Tanimizu & A.Hibara(T. Kitamori)

Workshop on http://wwwkm.phys.sci.osaka-u.ac.jp/~hazama/iso-wsp/workshop.html Double Beta Decay and Isotope Science/Engineering

November 22(Tuesday) - 23(Wednesday), 2005 Osaka, Japan

Top Annoucement Program Workshop site Organizer Contact

 October 19: <u>1st announcement</u>, update program pages November 22: <u>Program and Participant List</u> November 19: <u>Workshop Poster</u> November 19: <u>Workshop Poster1</u>, program

Motivation and scope

Neutrino mass is a key issue of current neutrino physics. Double beta decay may be the only probe presently able to access small neutrino masses with sensitivity down to ~0.03 eV, inferred from neutrino oscillation experiments. Actually, observation of neutrinoless double beta decay would identify a Majorana-type electron neutrino with a non-zero effective mass. Now the widest variety of stable isotopes are mainly produced at electromagnetic separators and gas centrifuges. Flexible highly efficient centrifugal technology is only possible for those elements (about 20) which have gaseous compounds at room temperature. Therefore, these methods cannot meet the

production of some double beta decay isotopes such as ⁴⁸Ca, ⁹⁶Zr and ¹⁵⁰Nd etc. The workshop will provide wide ranging opportunities for scientists and engineers in various fields working not only on isotope effects in physics, chemistry, and engineering but also applications of isotopes in various fields in order to exchange new ideas, share current knowledge and present new results.

Topics:

Double beta decay Isotope Science/Engineering Mass Spectroscopy Geochemistry, etc

Speakers:

R. Hazama, T. Kishimoto, I. Ogawa, A. Hibara,

◆大阪大學

- N. Ishihara, K. Takeshita, Y. Murakami, M. Tanimizu,
- K. Matsuoka, E. Matsumoto, Y. Fujii, K. Komura,
- Y. Sakuma, S. Umehara, M. Miyabe, Y. Hirano
- H. Niki, U. Tanaka,