Towards event-by-event studies of the ultrahigh-energy cosmic-ray composition

6th Rencontres du Vietnam, Challenges in Particle Astrophysics

Hanoi, 6-12 August, 2006

Dmitry S. Gorbunov

astro-ph/0601449 astro-ph/0606442 astro-ph/06xxxxx

In collaboration with G.I. Rubtsov, S.V. Troitsky, MSU, Yakutsk Collaboration

gorby@ms2.inr.ac.ru

D. Gorbunov

Institute for Nuclear Research, Moscow

Towards event-by-event composition studies - p. 1/19

Motivation

What can we learn from GZK-studies, if the cutoff would be observed?

Astrophysics

sources:

accelaration mechanism, local backgrounds

space:

 γ -background, magnetic fileds

Particle physics

interactions at $E_{cm} \gtrsim 300$ TeV:

cross section, inelasticity, multiplicity, P_T -distribution, new physics phenomena?

Motivation

What can we learn from GZK-studies, if the cutoff would be observed?

Astrophysics

sources:

accelaration mechanism, local backgrounds space:

 γ -background,

D. Gorbunov

magnetic fileds

Particle physics

interactions at $E_{cm} \gtrsim 300$ TeV:

cross section, inelasticity, multiplicity, P_T -distribution, new physics phenomena?

للر ليلز لالد

chemical composition

Plan

- The main idea: event-by-event analysis
- The probability of a given particle ($p, \gamma, ...$) to be a primary of a given observed event
- Chemical composition from observed events with "estimated" primary type
- Several Examples: highest energy AGASA and Yakutsk events, low energy Yakutsk events
- What else?

Event-by-event analysis

It is obviously important for studies of:

- highest energy tail
- evolution of chemical composition with energy
- global anisotropy (direction-dependent composition)?

Problems with poor statistics:

- just several parameters of EAS are measured
- significant fluctuations
- degeneracy: similar values for different primaries
- azimuth angle dependence

Interesting questions: a given event

For a given observed event (several parameters of EAS are measured):

- conservative study (negative knowledge): what is the probability, that it could not be initiated by the primary A?
- (positive knowledge): what is the probability, that it could be initiated by a primary of a given type A_i (say, $A_i = p, \gamma, ...,$ Fe)?

_ . .

What is the primary of an observed event?

energy-related parameters of EAS (S_{600} ,...) E-parameters composition-related parameters of EAS (ρ^{μ}_{1000} ,...) c-parameters

Both parameters are reconstructed with some errors

The probability distribution that the primary particle which produced an actual shower with the observed E-parameters equal to E_{obs} would rather produce a shower with these parameters equal to E_{rec} : $g_E(E_{rec}, E_{obs})$

The probability distribution that a shower with measured **c**-parameters equal to **c** could produce detector readings corresponding to **c**': $g_c(\mathbf{c}', \mathbf{c}).$

Steps

- 1. for each primary one generates a library of \mathcal{N} simulated showers : the same direction, $E_s \sim E_{\rm obs}$, e.g. $0.5E_{\rm obs} < E_s < 2E_{\rm obs}$
- 2. following the experimental procedure for each event one finds $E_{\rm rec}$ (e.g., $S_{600}^{\rm rec}$)
- 3. one assigns to each simulated shower a weight $w_1 = g_E(E_{obs}, E_{rec})$
- 4. one assigns to each simulated shower an additional weight $w_2 = (E_s/E_{obs})^{\alpha}$ to mimic the real power-law spectrum

Output:

D. Gorbunov

The distribution of the c-parameters for the showers consistent with the real one by E-parameters is given by

$$f_A(\mathbf{c}) = \frac{1}{\mathcal{N}} \sum_{i}^{\mathcal{N}} g_c(\mathbf{c}, \mathbf{c}_{iA}) w_{1,iA} w_{2,iA}$$

Example

Distributions of muon densities f_A of simulated events: thin dark line, $A = \gamma$; thick gray line, A = p; dashed line, A = Fe.

Results

If the event is unlikely being initiated by the primary A, one can estimate the probability of it could be initiated by the primary A:

$$p_A = F_A(\mathbf{c}_{obs}) \equiv \int_{f_A(\mathbf{c}) \le f_A(\mathbf{c}_{obs})} f_A(\mathbf{c}) d\mathbf{c}$$

one can test the hypothesis that the primary was either A_1 or A_2 . Then $p_{A_1} + p_{A_2} = 1$ and

$$p_{A_k} = rac{f_{A_k}(\mathbf{c}_{\mathrm{obs}})}{f_{A_1}(\mathbf{c}_{\mathrm{obs}}) + f_{A_2}(\mathbf{c}_{\mathrm{obs}})}$$
 , $k = 1, 2$

Towards event-by-event composition studies – p. 9/19

Interesting questions: combined set

Chemical composition of UHECR within a given energy interval $E_{min} < E < E_{max} (\equiv \mathcal{E})$ (within a given solid angle, etc.):

- (negative knowledge): the upper limit on the primary A
- (positive knowledge): what is the most probable chemical composition (the set of possible primaries is fixed)?

<u>_</u>___

Procedure to estimate the chemical composition

- 1. one selects the set of *N* observed events (E-, c-parameters have been measured) experimental cuts ($z < 45^{\circ}$), quality cuts,...
- 2. for each event *j* one compares the parameters of simulated EAS of various primaries to parameters of observed EAS and estimates the probabilities $p_i(j)$ that it could (not) be initiated by a primary A_i of energy within \mathcal{E}
- 3. $p_i(j)$ enables one to estimate the probability that among N events n_i were (not) initiated by primary A_i combinatorics
- 4. one estimates the most probable chemical composition ϵ_i or set the upper bound on a primary A_i , which are consistent with selected set of observed events likelihood
- 5. one takes into account possible corrections because of cuts on initial set, detector acceptance, etc. lost events

The upper limit on a fraction of primary A

1. Input

set of N observed events with energies \mathcal{E} ,

 $p_A^{(+)j}$, $p_{\overline{A}}^{(+)j}$,

generally $p_A^{(+)j} + p_{\overline{A}}^{(-)j} \neq 1$

Steps

2. Probability $\mathcal{P}(n_1, n_2)$: among *N* observed events, n_1 initiated by *A* with \mathcal{E} and n_2 initiated by \overline{A} with \mathcal{E} :

The probability to have i_1 -th, ..., i_{n_1} -th events ($i_1 < \cdots < i_{n_1}$) induced by A with \mathcal{E} and k_1 -th, ..., k_{n_2} -th events ($k_1 < \cdots < k_{n_2}$, $i_j \neq k_l$) induced by \overline{A} with \mathcal{E} :

$$\mathcal{P}\left(\{i_j\},\{k_l\}\right) = \prod_{i_j} p_A^{(+)i_j} \prod_{k_l} p_{\overline{A}}^{(+)k_l} \prod_{m_n \neq i_j,k_l} \left(1 - p_A^{(+)m_n} - p_{\overline{A}}^{(+)m_n}\right) ,$$

To calculate $\mathcal{P}(n_1, n_2)$ one sums over all subsets $(\{i_j\}, \{k_l\})$

$$\mathcal{P}(n_1, n_2) = \sum_{\substack{i_1 < i_2 < \dots < i_{n_1} \\ k_1 < k_2 < \dots < k_{n_2}}} \mathcal{P}\left(\{i_j\}, \{k_l\}\right) , \quad 1 \le i_j, k_l, m_n \le N$$

D. Gorbunov
Towards event-by-event composition studies - p. 12/19

The upper limit on a fraction of primary A

Let ϵ_A be the fraction of A in \mathcal{E}

3. Let $\mathcal{P}(\epsilon_A)$ be the probability that the observed results are reproduced for a given ϵ_A . Hence

$$\mathcal{P}(\epsilon_A) = \sum_{n_1,n_2}^{n_1+n_2 \leq N} \mathcal{P}(n_1,n_2) \epsilon_A^{n_1} (1-\epsilon_A)^{n_2}$$

4. Upper limit on ϵ_A at a given confidence level ξ :

$$P(\epsilon_A) \ge 1 - \xi$$

5. Correction because of cuts:

$$\lambda = \frac{m_{\text{lost}}}{m}$$
, $\epsilon_{A, \text{true}} = \frac{\epsilon_A}{1 - \lambda + \lambda \epsilon_A}$

Example

all AGASA events with known muon content and energies $E_{\rm obs} > 8 \cdot 10^{19}$ eV: N=6

Towards event-by-event composition studies - p. 14/19

Low energy Yakutsk data

Towards event-by-event composition studies – p. 15/19

The most probable chemical composition

1. Input

set of N observed events with energies \mathcal{E} ,

 $p_{A_1}^{(+)j}$, $p_{A_2}^{(+)j}$,

generally $p_{A_1}^{(+)j} + p_{A_2}^{(-)j} \neq 1$

Steps

2. Probability $\mathcal{P}(n_1, n_2)$: among *N* observed events, n_1 initiated by A_1 with \mathcal{E} and n_2 initiated by A_2 with \mathcal{E} : The probability to have i_1 -th, ..., i_{n_1} -th events ($i_1 < \cdots < i_{n_1}$) induced by A_1 with \mathcal{E} and k_1 -th, ..., k_{n_2} -th events ($k_1 < \cdots < k_{n_2}$, $i_j \neq k_l$) induced by A_2 with \mathcal{E} :

$$\mathcal{P}\left(\{i_j\},\{k_l\}\right) = \prod_{i_j} p_{A_1}^{(+)i_j} \prod_{k_l} p_{A_2}^{(+)k_l} \prod_{m_n \neq i_j,k_l} \left(1 - p_{A_1}^{(+)m_n} - p_{A_2}^{(+)m_n}\right);,$$

To calculate $\mathcal{P}(n_1, n_2)$ one sums over all subsets $(\{i_j\}, \{k_l\})$

$$\mathcal{P}(n_1, n_2) = \sum_{\substack{i_1 < i_2 < \dots < i_{n_1} \\ k_1 < k_2 < \dots < k_{n_2}}, i_j \neq k_l} \mathcal{P}\left(\{i_j\}, \{k_l\}\right), \quad 1 \le i_j, k_l, m_n \le N$$
. Gorbunov
$$Towards event-by-event composition studies - p. 16/19$$

The most probable chemical composition

Let us suppose that $\epsilon_{A_{1,2}}$ are the fractions of $A_{1,2}$ 3. Let $\mathcal{P}(\epsilon_{A_1})$ be the probability that the observed results are reproduced for a given set ($\epsilon_{A_1}, \epsilon_{A_2} = 1 - \epsilon_{A_1}$). Hence

$$\mathcal{P}(\epsilon_{A_1}) = \sum_{n_1,n_2}^{n_1+n_2 \leq N} \mathcal{P}(n_1,n_2) \epsilon_{A_1}^{n_1} \left(1-\epsilon_{A_1}
ight)^{n_2}$$

4.a The allowed ϵ_{A_1} at a given confidence level ξ :

$$P(\epsilon_{A_1}) \geq 1-\xi$$

4.b The most probable composition: maximization of $\mathcal{P}(\epsilon_{A_1})$ 5. Correction because of cuts:

$$\lambda = \frac{m_{\text{lost}}}{m} , \qquad \epsilon_{A_1}^{\text{true}} = \frac{\epsilon_{A_1}(1 - \lambda_{A_2})}{1 - \lambda_{A_1} + \epsilon_{A_1}(\lambda_{A_1} - \lambda_{A_2})} .$$
D. Gorbunov
Towards event-by-event composition studies - p. 17/19

Example

Towards event-by-event composition studies – p. 18/19

D. Gorbunov

What else?

With this method one can consider

- Many types of c-parameters
- Many types of primaries
- Unknown primary
- Only \mathcal{E} depends on energy systematics

Towards event-by-event composition studies – p. 19/19