Search for the θ_{13} mixing angle with reactor neutrinos

Dario Motta (CEA/Saclay)

An Introduction to the Physics

Neutrino mixing : how much of v_e is in v_3 ?

$$U_{MNSP} = U_{atm} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{cp}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{cp}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times U_{sol} \times U_{Maj}^{diag}$$

θ₁₃ is the key parameter to access:
 → genuine 3-flavors effects
 → CP-violating phase δ

parameter	$bf \pm 1\sigma$	1σ acc.	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.9 ± 0.3	4%	7.3 - 8.5	7.1 - 8.9
$ \Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2\right]$	$2.5^{+0.20}_{-0.25}$	10%	2.1 - 3.0	1.9 - 3.2
$\sin^2 heta_{12}$	$0.30\substack{+0.02\\-0.03}$	9%	0.26 - 0.36	0.24 - 0.40
$\sin^2 heta_{23}$	$0.50^{+0.08}_{-0.07}$	16%	0.38 - 0.64	0.34 - 0.68
$\sin^2 heta_{13}$	_	_	≤ 0.025	≤ 0.041

(Thomas Schwetz, fit to global data, hep-ph/0606060)

Current constraint (90 % C.L.)

(M. Apollonio et. al., Eur.Phys.J. C27 (2003), 331)

 $sin^{2}2\theta_{13} \lesssim 0.12 - 0.20$ (CHOOZ + allowed Δm^{2}) $sin^{2}2\theta_{13} \lesssim 0.12$ (global analysis + best fit Δm^{2})

(Thomas Schwetz, hep-ph/0606060)

Experimental search for θ_{13}

Look for $v_x \rightarrow v_y$ oscillations (x or y = e) driven by Δm_{13}^2

Appearance at Super-Beams (T2K, NOvA): $v_{u} \rightarrow v_{e}$ (E ~ GeV, L ~10²- 10³ km)

 $P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta$

- $\mp \alpha \sin 2\theta_{13} \sin \delta_{\rm CP} \sin 2\theta_{12} \sin 2\theta_{23} \Delta \sin^2 \Delta$
- + $\alpha \sin 2\theta_{13} \cos \delta_{\rm CP} \sin 2\theta_{12} \sin 2\theta_{23} \Delta \cos \Delta \sin \Delta$

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \qquad \Delta = \frac{\Delta m_{31}^2 L}{4 E_{\nu}}$$

+ $\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \Delta^2$ + corrections for matter effects

> θ_{13} signal entangled with unknown parameters > Sensitivity to θ_{13} correlations/degeneracies-dominated Sensitivity to CP violation

Disappearance at reactors: $\overline{\nu}_{a} \rightarrow \overline{\nu}_{a}$ (E ~ 4 MeV, L ~ km)

 $1-P(\overline{v} \rightarrow \overline{v}) = sin^2(2\theta_{13})sin^2\Delta$ (+ solar corrections)

Clean measurement of θ_{13} > Sensitivity to θ_{13} systematics-dominated

Reactor-based search: experimental concept

CHOOZ experiment

- 2 reactors: P_{th} = 8.4 GW_{th}
 1 detector: L = 1.05 km, M = 5 t
- Statistics: ~2700 v–events

R = 1.01 ± 2.8% (stat) ± 2.7% (sys)

How to improve CHOOZ ?

There is still large room to exploit the reactor-based search !

From CHOOZ to next generation experiments

- → Statistical error : 2.8 % \rightarrow ≤ 0.5 %
- → Knowledge of source & detector : 2.7 % → better than 1%

Proposed approach

Improve statistics by running longer (\Leftrightarrow scintillator stability), with a larger target mass and an intense source (\Leftrightarrow reactor power)

- Cancel most of the systematics with a 2-detector concept
- Improve experimental design to control detector-related systematics
- Movable detectors may further reduce systematics (needs validation)
 - Martemianov et al., Phys.Atom.Nucl. 66 (2003), 1934 (hep-ex/0211070)
 - "White Paper Report on Using Nuclear Reactors to search for a value of θ_{13} ", hep-ex/0402041 (125 authors, 40 Institutions, Editor: M. Goodman)

Experimental concept in a nutshell

 $\overline{\nu}_{e} + p \rightarrow e^{+} + n (Q = 1.8 \text{ MeV})$ $n_{th} + \text{Gd} \rightarrow \text{Gd}^{*} \rightarrow \text{Gd} + \sim 8 \text{MeV}$

Expected signal in Double Chooz $sin^{2}2\theta_{13} = 0.1$; $\Delta m^{2}_{13} = 2.5 \cdot 10^{-3} \text{ eV}^{2}$; 3y data ; error bars statistical only

Sensitivity (if no signal, 90% C.L.)

 mostly from shape distortion • limited by spectral shape uncertainties due to uncorrelated $\sigma_{_{bin-to-bin}}$ (bkg, ...)

Note:

calculation for **Double Chooz** base case $(\sigma_{norm} = 0.6\%)$

The fight for the reduction of systematics

		CHOOZ	Realistic now	Wished for future	Comments
		(single far detector)	(Double Chooz proposal)	(need further R&D)	
	Power	~ 2 %	negligible	negligible [*]	*: ~ 0.1% for Multi-core site
	E/fission	0,6%	negligible	negligible	
Reactor	v/fission	0,2%	negligible	negligible	
	σ	0,1%	negligible	negligible	
	Distances & finite size	negligible	0,2%	0,1%	distances known at 10 cm
	Tot Reactor	2,2%	0,2%	0,1%	
					If same batch of scintillator
# target p		0,8% (absolute)	0,2% (relative)	0,1%	only error on target M
					-> detector swapping ?
	e ⁺ energy cut	0,8%	0,1%	0,05%	low threshold,γ-catcher
	Gd/H captures	1,0%	0,2%	< 0,1%	identical detectors
	n energy cut	0,4%	0,2%	< 0,1%	
Efficiency	e+ – n distance	0,3%	not necessary	not necessary	lower single rate (buffer)
	e⁺ – n delay	0,4%	0,1%	0,03%	identical detectors
	n multiplicity	0,5%	negligible	negligible	lower single rate (buffer)
	dead-time near		0,2%	negligible	random fake-v generator
			,		
	Tot efficiency	1,5%	0,4%	≲0,15%	
	Grand Total	2,7%	≲0,5%	≲ 0,2%	

A staged approach from 1st to 2nd generation ?

Backgrounds

CHOOZ measured Reactor-off background ... Chance for a "signal-free" background measurement:

• **2-core sites** \Rightarrow both reactor off is extremely rare, but possible (in addition, ~ a few weeks/y with 1 reactor off for re-fueling)

Multi-core sites ⇒ impossible ... (just modulations of total power)

Note: some backgrounds can be measured in-situ with reactors on

- 3 types of background
- → <u>Accidentals</u>: γ + delayed n–like
- → Fast n: p-recoil + n capture by "near-miss" μ
- Cosmogenics: β-n emitters (⁹Li, ⁸He) created by showering μ

Remember that background is tolerable if ~ 10t Target \Rightarrow uncertainty/En-bin ~ 1% of the signal \gtrsim 100 t Target \Rightarrow uncertainty/En-bin \lesssim 0.5% of the signal

All backgrounds are suppressed with <u>increasing overburden</u> ... Further handles from detector design:

Accidentals

- material radio-purity
- → shielding

Fast n (recoil p + n capture)

- → large and effective μ -veto
- shielding
- Cosmogenics (<u>⁹Li</u>, ⁸He)
 - → overburden !

 \rightarrow veto for showering μ

Can be measured *in-situ*

Can be measured *in-situ* for E above and below \overline{v} signal (shape known ~ flat)

Shape known. Rate to evaluate with MC, past measurements (CHOOZ, KamLAND, ...) or dedicated experiments

Detector	Site		Background				
			Accidental		Correlated		
			Materials	\mathbf{PMTs}	Fast n	μ -Capture	⁹ Li
CHOOZ		Rate (d^{-1})					0.6 ± 0.4
$(24 \ \nu/d)$		Rate (d^{-1})	0.42 ± 0.05		$1.01 \pm 0.04(stat) \pm 0.1(sys)$		
	Far	${ m bkg}/ u$	1.6%		4%		
		Systematics	0.2%		0.4%		
Double Chooz		Rate (d^{-1})	1 ± 0.1	1 ± 0.1	0.15 ± 0.15	0.42 ± 0.2	1 ± 0.5
$(69 \ \nu/d)$	\mathbf{Far}	${ m bkg}/ u$	1.4%	1.4%	0.2%	0.6%	1.4%
		Systematics	0.2%	0.2%	0.2%	0.3%	0.7%
Double Chooz		Rate (d^{-1})	7.2 ± 1.0	7.2 ± 1.0	1.4 ± 0.14	2.6 ± 1.2	5.2 ± 3.2
$(990 \ \nu/d)$	Near	${ m bkg}/ u$	0.7%	0.7%	0.14%	0.26%	0.6%
		Systematics	0.1%	0.1%	0.2%	0.1%	0.3%

Table from Double Chooz proposal hep-ex/0606025

Proposed Experiments

Double Chooz

Near site: L ~ 280 m (to build, ~ 80 mwe) Far site: L = 1050 m available from CHOOZ ~ 300 mwe

• 2 cores - 1 site - 8.5 GW_{th}

- 1 near, 1 far position (the latter available!)
- 2x8.2t target masses
- Civil constructions
- 1 near shaft ~ 40 m, Ø 6m
- 1 laboratory
- Statistics (including ϵ)
- far: ~ 50 events/day
- near: ~ 550 events/day
- Systematics
 - reactor: ~ 0.2%
 - detector: ~ 0.5%
- Backgrounds
- $-\sigma_{\rm bin-bin}$ at far site: $\lesssim 1\%$
- $\sigma_{\rm bin-bin}$ at near site: $\,\, \lesssim \, 0.5\%$
- Planning
- 1. Far detector only
 - <u>2008-2009</u>
 - Sensitivity (1.5 years) ~ 0.06
- 2. <u>Far + Near detector</u>
 - from <u>2010</u>
 - Sensitivity (3 year) $\lesssim 0.03$

Detector design finalized

See proposal for details of all sub-systems:

<u>hep-ex/0606025</u>

+30% +25% +20% +15%

+10%

+5%

Pre-study for the design and optimization of the near laboratory concluded

R&D on Gd-doped scintillators and acrylic

2 formulations of Gd– doped LS developed and successfully tested (Gd–cbx and Gd–bdk)
Chemical project now scaling from ~ 100 l to industrial production

Gd-Betadiketonate Scintillator Gd-Carboxvlate Scintillator Ë õ 11 o.8 .e <u>م</u> ٥.6 day 0 (March 11 2005) day 0 (March 11 2005) day 174 day 174 day 242 day 242 0.4 day 399 day 399 0.2 350 400 450 500 550 600 450 500 550 600 Wavelength (nm) Wavelength (nm)

Test of the long-term stability of Gd-doped LS samples

1/5 technological mock-up Target filled with 110 I Gd-loaded scintillator ⇒ comprehensive validation test (concluded, analysis ongoing)

Discovery potential

Double Chooz status & prospects

Double Chooz approved and funded in France
Funded by Max Planck Society, first approval by German BMBF
DOE rejected the US R&D proposal (stating there is not enough money for a participation in both Double Chooz and Daya Bay)
The reaction of the French agencies was doubling their initial investment ... Strong French commitment to not delay the project
New collaborators: Madrid; Oxford (Braidwood migration ...)

The largest part of the funding is secured R&D is concluded

Project shifting now to construction phase

- Proposal: hep-ex/0606025
- (157 pages, 113 authors, 24 institutions)
- now → 2007: material procurement
- Oct 2007: start far detector construction
- June 2008: far detector commissioning
- 2008: near lab construction
- Spring 2009: near lab available
- Fall 2009: near detector commissioning

Overview of the Daya Bay experiment

Far: 80 ton 1600m to LA, 1900m to DYB Overburden: 350m Muon rate: 0.04Hz/m²

0% slope

Mid: Baseline: ~1000m Overburden: 208m

0% slope

Access portal

8% slope

Daya Bay cores

LA: 40 ton Baseline: 500m Overburden: 112m Muon rate: 0.73Hz/m²

LingAc

0% slope

LingAo cores

DYB: 40 ton Baseline: 360m Overburden: 98m Muon rate: 1.2Hz/m²

- 4 cores 2 sites 11.6 GW_{th}
 - -> 6 3 in 2011, 17.4 GW_{th}
- 2 near, 1 mid, 1 far position
- far: 4x20t modules
- near: 2 x 2 x 20t
- Civil constructions
- ~ 3.4 km galleries
- 4 laboratories
- Statistics
- far: 80 events/day
- near: 560 events/day
- Movable modules -> swap
- Systematics
 - reactor: ~ 0.1%
 - detector: ~ 0.2%
- Backgrounds
- B/S at near site: ~ 0.5%
- B/S at far site: $\sim 0.2\%$
- Planning
- 1. Fast measurement
 - DYB+Mid, <u>2008-2009</u>
 - Sensitivity (1 year) ~ 0.03
- 2. Full Measurement
 - DYB+LA+Far, from 2010
 - Sensitivity (3 year) <0.01

Data

150

200

Simulation

250

300

Prototype 0.6 t (undoped) ✓ 45 PMTs takes data !

The Daya Bay collaboration A strong US-China commitment !

Europe (3) Political Map of the World, June 1999 JINR, Dubna, Russia and the local of heating with internet server. Kurchatov Institute, Russia Charles University, Czech Republic North America (9) LBNL, BNL, Caltech, UCLA Asia (12) Univ. of Houston, lowa state Univ. IHEP, CIAE, Tsinghua Univ. Zhongshan Univ.,Nankai Univ. Univ. of Wisconsin, Illinois Inst. Tech., Beijing Normal Univ., Shenzhen Univ., Hong Kong Univ. Univ. of Illinois Chinese Hong Kong Univ. Taiwan Univ., Chiao Tung Univ., National United Univ. ~ 100 physicists

Anterctica

Daya Bay status & prospects

- Project approved in China
- Chinese Atomic Energy Agency and the Daya Bay nuclear power plant are very supportive to the project
- Funding agencies in China are supportive, R&D funding in China approved and available
- R&D funding from DOE approved
- Site survey including bore holes completed
- R&D underway, prototype operational
- Proposals in preparation

Anticipated sensitivity

KASKA (*Kas*hiwazaki-*Ka*riwa Nuclear Power Station)

Reactor and Detector Locations

- 7 cores 2 sites 24.3 GW_{th}
- 2 near, 1 far position
- 3 x 6t target mass
- Civil constructions
- 2 near shafts: ~ 50 m, Ø 6m
- 1 far shaft: ~ 150 m, Ø 6m
- 3 laboratories
- Statistics
 - 0.4 % after 3 y data-taking
- Systematics
 - reactor: ~ 0.2%
 - detector: < 0.8%
- Background
- subtraction error < 0.6%
- Planning
 - pending funding, 3y construction
 - sensitivity (after 3 year) <u><0.025</u>

Kaska status & prospects

Proposal submitted to japanese funding agencies:

- hep-ex/0607013
- 82 pages, 37 authors, 10 institutions
- Struggling hard for funds
- Possible start: 2010
- Sensitivity: ~ 0.02

- 6 cores 1 site 17.3 GW_{th}
- 1 near, 1 far, 3 "nearest" positions
- 2 x 20t target mass
- 3 x ~ 300 kg target mass
- Civil constructions
- ~ 700 m galleries
- 2 laboratories
- Statistics
- far: ~ 100 events/day
- near: ~ 5000 events/day
- Systematics
 - total: ~ 1%
- Overburden
 - far: ~ 700 mwe
 - near: ~ 240 mwe
- Planning
- start of construction in 2007 (??)
 - sensitivity: <u>~ 0.02</u>

RENO status & prospects

RENO is the "last-comer" in this business, R&D is still at a very early stage

Nevertheless, RENO can take advantage of the know-how and technical solutions developed in other projects, and thus catch up relatively quickly

RENO has a good site and a strongly motivated collaboration, eager to develop this physics in Korea

- In 2006 working groups have been formed
- South Korea is very supportive: 9M\$ approved
- → Wait and see ...

Ideas for the future ...

- 1 reactor + 1 in construction
- topography ok for overburden
- very large target mass (~ 200 t)
- sensitivity from spectral distorsion
- strategy: learn from Double Chooz and plan the next step
- Brasilian physicists enthusiastic, local authorities supportive

Triple Chooz

Just an idea ... !

Large cavity next to existing lab, available from 2011 (after dismountling of the ancient CHOOZ-A underground reactor).

A >100t detector could add to Double Chooz to investigate spectral distorsions

Conclusive Remarks & Conclusive Conclusions

Measurement of θ_{13} by 2013?

Difficult to explain vanishing θ_{13} with large θ_{12} and θ_{23} ... If numerical coincidence, discovery could be round the corner ! Consequence: U_{MNSP} fully determined

strong constraints to theory

possible early indications of CP violation from T2K and NOvA combined with reactors

lf not

very strong constraints to theory, as well !

→ synergies between Super–Beams and 2^{nd} generation reactor experiments (class sin²2 θ_{13} < 0.01)

Conclusions

Double Chooz

- funding is secured, R&D concluded, construction is beginning !
- $\sin^2\theta_{13}$ < 0.03 (90% C.L) (3 σ discovery at ~ 0.05)
- Daya Bay
 - approved by China, R&D supported by DOE
 - strong US-Chinese commitment !
 - aimed sensitivity: $sin^2 2\theta_{13} < 0.01$ (large mass and movable detectors)
 - staged approach ? From 1st to 2nd generation ...
- Other interesting 1st generation projects starting R&D (RENO) or struggling for funds (KASKA)
- 1st generation will set fundamental benchmarks for the future reactor search (Daya Bay full, Angra, Triple-Chooz)

Back-up & Cut Slides

The choice of the future technology to explore leptonic CP-violation depends critically on the size of θ_{13} Reactor and Super-beams searches are complementary

Far detector distance Δm_{31}^2 = from 2.0 to 3.5 10⁻³ eV²

Overview of the current projects

Double Chooz (France, Germany, US, Spain, England, Russia)

~ Fully funded, strong international support (however US participation weaker after DOE decision), R&D concluded, launching construction. Start-up with far + near detector by 2010, targeted sensitivity: $sin^2 2\theta_{13} < 0.03$

Daya Bay (China, US)

Approved in China, supported by DOE, strong US – Chinese commitment. R&D well underway. Aggressive schedule (competitive with Double Chooz), likely staged approach (sin²2 θ_{13} < 0.03 \rightarrow 0.01).

• 1^{st} generation projects (sin²2 $\theta_{13} \lesssim 0.025$) pursued in a single country

- → Kaska (Japan): advanced R&D, struggling for funds in Japan
- Reno (South Korea): initial R&D, grant of 9M\$ from South Korea
- 2^{nd} generation projects (sin²2 θ_{13} < 0.01)
 - → Braidwood: stopped after DOE refusal to support the project
 - Angra: preliminary feasibility studies, collaboration with Double Chooz
 - → Triple Chooz: an idea ... a large cavity beside the far lab will be available from 2011