

MINOS

Main Injector Neutrino Oscillation Search

OUTLINE

- Strategy & physics program
- Experimental setup
 - Main Injector & NuMI Beam
 - **▶ Detectors Near/Far/Calibration**
 - Data sets
- Results from the first year

(May 2005 - Feb 2006)

- ► 1.27x10²⁰ protons on target
- ► Analysis
- **▶** Oscillation parameters
- Summary and prospects

MINOS

Main Injector Neutrino Oscillation Studies

Minn.

Strategy for precision measurements:

- Two-detector measurement
 - long baseline (735km)
 - underground (CR shielding + physics)
- ☐ High intensity beam from 120 GeV Main Injector
 - ► (up to) 4x10¹³ protons/pulse (0.4 MW beam)

(potential for ~4x10²⁰ protons/year)

- single turn extraction (8.67 μs)
- Flexible & well-controlled beam
 - two parabolic magnetic horns
 - ► movable target (→energy spectrum)

MINOS Physics Program

Main goals:

- Decisive low-systematics observation of disapearannee ($\nu_{\mu} \rightarrow \nu_{x}$)
- □ Determine $|\Delta m_{32}^2|$ and $\sin^2 2\theta_{23}$ with ~10% accuracy
- ☐ Measure (or improve limits) on $v_{\mu} \rightarrow v_{e} / v_{\mu} \rightarrow v_{sterile} /$ "exotic" transitions
- ☐ Test CPT in atmospheric CC_u charge-separated interactions

The method:

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2 (1.267 \Delta m^2 L/E)$$

Monte Carlo plots for $\Delta m^2 = 0.003 \text{ eV}^2$ and $7.4 \times 10^{20} \text{ pot}$

Experimental setup: the Main Injector

(Main Injector = MI)

- MI is fed 1.56 us batches from **8 GeV Booster** (MI ramp time ~1.5sec)
- NuMI designed for
 - ▶ 8.67 usec single turn extraction
 - ► 4 × 10¹³ppp @ 120 GeV
 - ▶ 1.9 second cycle time
 - ▶ beam power ~400kW
- Typical performance to date:
 - **▶ 2.3** × 10¹³ ppp @ 120 GeV
 - ▶ 2.2 second cycle time
- Achieved records:
 - **▶** 3 ×10¹³ ppp @ 120 GeV
 - ▶ 2.0 second cycle time
 - ▶ 280 kW

Experimental setup: NuMI beam

NuMI - multi-beam

Energy (GeV)

1.2% v_e, 0.1%anti- v_e

Modern tools of experimental particle physics: TBM – Tunneling Boring Machine

Tunneling

MINOS Target Hall

Muon Monitors to Study v Beam

"MINOS technology"

Extruded PS scint. 4.1 x 1 cm

Clear Fiber cables

Multi-anode PMT

Far Det

Near Det

Near Detector – 1,040 m from the target at Fermilab

1.5

οĖ

- veto target μ spectrometer
- mass = 1 kT
- 153 scintillator planes
- QIE-based front-end
- □ 3.8 x 4.8 "squeezed" octagon
- 12,300 scint.strips
- ☐ 1-end readout
- no-multiplexing
- □ 220 M64s
- ☐ 282 steel planes
- 65 km WLS fiber
- 51 km clear fiber

-0.5 -1 -1.5 -2

103 m underground

bfld 160.dat - Near Detector

1.8 **C**

0.8

0.6

0.4

0.2

v target region

μ spectrometer region

Far Detector - 735.3 km away (Soudan Mine, Mn)

- 2 Supermodules
- 5.4 kT
- 484 scint. planes
- CR veto shield (2,070mwe)
- B ~ 1.5T (R=2m)
- 93,120 strips (4.1 x 1.0 cm)
- 8-fold MUXed 2-ended readout
- 1551 M16s
- 722 km of WLS fiber
- 794 km of clear fiber
- $HAD = 56\% / E^{1/2}$
- EM = 23% / E 1/2

Running since July 2003

coil

Veto Shield

Scintillator Plane (8 modules, 192 strips) 8_m

MINOS Calibration Detector - an experiment 2001-2003 at CERN PS

MINOS is a 3-detector **Experiment!**

- •5 tons (5 modules for moving)
- •1 m x 1 m x 3.7 m
- •60 MINOS planes
- Long WLS andClear fiber cables
- No B field
- •24 strips/plane (a total of 1440 strips)
- X-Y views
- FarDet and/or NearDet readout

- **♦ Determine the absolute energy scale to <5%**
- **♦**Establish relative energy scale <2%
- **♦Energy and topology response**
- **♦**Monte Carlo tuning
- **♦Beam p,π,e,μ 05-10 GeV/c**
- **♦**Cosmic ray muons (stopping)

MINOS Calibration Detector – 2 GeV events

MINOS Calibration Detector Response

Energy resolution

Had:

$$\frac{56\%}{\sqrt{E}}$$

EM:

$$\frac{21.4\%}{\sqrt{F}}$$

New experimental challenges in neutrino physics - intensity

Near Detector spill

New experimental challenges in neutrino physics - intensity

1 spill lasts ~10 μs

Near Detector data stability

Energy spectrum by Month

Energy spectrum by batch

No reconstruction biases

Muon directions

Hadron production tuning

Tuning factors (weights) applied as a function of hadronic x_F and p_T.

Near detector rate & event vertices

- Stable data
- Took several special runs
- MC reasonably well agrees with data

Event classification - Near Detector

Far Detector events - blind analysis

- The blinding procedure hides an unknown fraction of Far Detector events based on their length and total energy deposition
- Unknown fraction Far Detector data was "open" (used to perform extensive data quality checks)
- Remaining fraction was "hidden"
- Once all analysis details were specified, "the box was open" (i.e., two data sets were combined and analyzed as one final set)

Require the muon angle < 53° wrt beam direction → CR bkg ~ < 0.5 event

4 methods for predicting the Far Det spectrum

4 methods of predicting the unoscillated CC energy spectrum from the Near to Far:

- 1) Near detector fitting:

 - ightarrow employ for the FD prediction.
- 2) Extrapolation: scale bin-by-bin (F/N) or use a transfer matrix

Official results with: "Beam matrix"

(with and "ND fit" check).

CC disappearance and energy spectra: observed versus expected (no oscillations)

Energy range	Observed	served Expected (no oscillations)	
<30 GeV	215	336.0+/-14.4	
<10 GeV	122	238.7+/-10.7	
<5 GeV	76	168.4+/-8.8	

Preliminary Uncertainty	Level of uncert.	Δm^2 (10 ⁻³ eV ²)	$\sin^2 \theta$
Near/Far normalization	± 4%	<u>0.050</u>	<u>0.005</u>
Absolute had. energy	± 11%	<u>0.060</u>	<u>0.048</u>
NC contamination	± 50%	<u>0.090</u>	<u>0.050</u>
All other syst. uncert.		0.044	0.011
Total Systematic (summ in quadrature)		0.12	0.07
Statistical Error (data)		0.36	0.12

$\Delta m_{32}^2 - \sin^2(2\theta_{23})$

0.004 ∆m₂₃

Systematic uncertainties incorporated in the fit.

Constrained to $\sin^2(2\theta_{23}) \le 1$.

$\Delta m_{32}^2 - \sin^2(2\theta_{23})$

Systematic uncertainties incorporated in the fit.

Constrained to $\sin^2(2\theta_{23}) \le 1$.

$\Delta m_{32}^2 - \sin^2(2\theta_{23})$

 $|\Delta m^2_{32}| = (2.74 \pm 0.28) \times 10^{-3} \,\mathrm{eV}^2/\mathrm{c}^4$ - if - $\sin^2 2\theta_{23} \equiv 1.00$

Systematic uncertainties incorporated in the fit.

Constrained to $\sin^2(2\theta_{23}) \le 1$.

Future of MINOS (need protons!)

MINOS Sensitivity as a function of Integrated POT

Statistical errors only 90% C.L.

Summary

- □ MINOS is under way: based on 1.27 x 10^{20} pot we observe disapearance of v_{μ} with > 6.2 σ significance (E_v < 10 GeV)
- Analysis indicates that the data are consistent with neutrino oscillations:

$$|\Delta m^2_{32}| = (2.74^{+0.44}_{-0.26}) \times 10^{-3} \,\mathrm{eV}^2/\mathrm{c}^4$$

 $\sin^2 2\theta_{23} = 1.00_{-0.13}$ (stat + sys)

- Statistical uncertainties dominate current measurements
- MINOS is already competitive with best experiments to date
- Paper submitted to PRL; archived at hep-ex/0607088
- Near future:
 - analysis to search for sterile neutrinos
 - **>** search for v_e appearance (θ_{13})
- Will collect a lot more data