

E = 1019 eV

E = 1018eV

ANISOTROPY STUDIES WITH THE PIERRE AUGER OBSERVATORY

Diego Harari (for the Auger Collaboration) Rencontres de Vietnam – August 7, 2006

> Nature and Origin of UHECRS: ENIGMATIC

CR ASTRONOMY $\leftarrow \rightarrow$ **MAGNETIC FIELDS**

ANISOTROPIES: CLUES TO ORIGIN ?

Data reported here ~ 50% annual exposure of complete Observatory

•Studies of galactic centre region E ~ EeV (10¹⁸eV) with significant statistics

• Preliminary searches for anisotropies in other targets

AGASA: Hints of anisotropy

 $10^{18} \,\mathrm{eV} < \mathrm{E} < 10^{18.4} \,\mathrm{eV}$

AUGER Surface Detector sees GC region 9 hs/day

Statistics already 4 times larger than AGASA in the GC region at these E

AUGER SOUTHERN OBSERVATORY

1600 surface detectores spaced 1.5 km over 3000 km² and 24 fluorescence telescopes in 4 "eyes"

SPECIAL DESIGN FEATURES

Surface detectors: "statistical engine" for showers on the ground

Fluorescence detectors: complementary view of shower development

Hybrid operation:

precision energy and angular calibration, consistency checks, etc.

Fluorescence detectors

Surface detectors

Data set reported here: January 1st 2004 \rightarrow March 30th 2006 154 detectors \rightarrow 930 detectors

Events statistics (SD)

Energy (eV) 10^{17.9}-10^{18.5} # of events: 79265

 θ_{max} = 60° - Level 5 quality trigger (hexagon of active stations around hottest tank)

Angular Resolution

Hybrid-SD only space angle difference

Relative exposure of the Surface Array

Two different approaches to estimate isotropic expectations

•Semi-analytic: coverage almost uniform in azimuth and sidereal time Declination dependence: from zenith-angle distribution

Right ascension modulation: $\omega(\delta, \alpha)$ due to array growth, dead times

Evaluated from number of hexagons with active detectors

•Shuffling: Average over many data sets with exchange of arrival times, random azimuths drawn uniformly.

Differences between methods below Poisson fluctuations

Exposure map (5[°] radius windows)

Excesses/defects significance map

SOUTHERN PERSPECTIVE

Galactic

coordinates

(l,b)

-00

Events map

Exposure map (5° radius windows)

Excesses/defects significance map

PRELIMINARY ANISOTROPY SEARCHES

1EeV < E < 5 EeV and E > 5 EeV

TARGETS:

All sky, 5° radius top-hat windows

GALACTIC PLANE: band with galactic latitude $|b_G| < 10^{\circ}$

SUPERGALACTIC PLANE: band with $|b_{SG}| < 10^{\circ}$

Excesses/defects compatible with isotropic expectations

ANISOTROPY STUDIES AROUND THE GALACTIC CENTRE AT EeV ENERGIES astro-ph/0607382

Attractive target:

•Galactic component of CRs still dominant at EeV energies?

•Potential accelerators: Massive black hole in Sagittarius A*, expanding SN remnant Sagittarius A East.

•TeV gamma-ray source, region of extended emission in central 200 pc (H.E.S.S.)

•High exposure of Southern Observatory (GC 6° from zenith)

•Previous reports of excesses

Testing previous reports of excesses

AGASA: 506/413.6 (22% excess) 10¹⁸ eV < E < 10^{18.4} eV 20° radius window around (280°,-17°) (Hayashida et al 1999)

AUGER: 2116 / 2159.5= 0.98 ± 0.02

22% excess would have been 2634 events (10 σ)

SUGAR: 21.8/11.8 (85% excess) 10^{17.9} eV < E < 10^{18.5} EeV 5.5° radius window around (274°,-22°) (Bellido et al 2001)

AUGER: 286 / 289.7= 0.98 ± 0.06

THE GALACTIC CENTRE REGION 10^{17.9} eV < E < 10^{18.5} eV

•Energy: calibrated with clean fluorescence data Less than 35% dispersion SD/FD in this energy range

•Energy shifts: to account for potential systematic difference in calibration between experiments.

Acceptance effects: different for source than background?
Acceptance to p 30% smaller than to Fe in this energy range.
22% excess with full acceptance → 15% excess

OUR RESULTS DO NOT SUPPORT PREVIOUS FINDINGS OF LOCALIZED EXCESSES IN GC REGION

Anisotropies on large scales (dipole): future work Require control of potential weather effects Possible weather-induced modulations ~1% (preliminary)

Bounds on a point-like neutron source at the GC

 $10^{17.9} \text{ eV} < \text{E} < 10^{18.5} \text{ eV}$ (79265 SD events)

Note that $\gamma c \tau_n \sim 9 \text{kpc E/EeV}$ (and GC is 8.5 kpc away)

•Gaussian filter: $exp(-\beta^2/2\sigma^2)$ β : angle to Sgr A* $\sigma=1.5^{\circ}$ (angular resolution 2.2°)

$n_{obs} / n_{exp} = 53.8 / 45.8 \rightarrow n^{95}_{source} < 18.5$ (95% CL)

Assume $\Phi_{source}(E) \sim \Phi_{cR}(E)$ and same acceptance to source and bulk

with $\Phi_{CR}(E) = \xi \ 30 \ (EeV/E)^3 (EeV \ km^2 \ yr \ sr)^{-1}$ ($\xi \sim 1$)

$$\rightarrow \Phi^{95}_{source} < \xi 0.08 \text{ km}^{-2} \text{ yr}^{-1}$$
 (95% CL)

Bounds on a point-like neutron source at the GC

10^{17.9} eV < E < 10^{18.5} eV

• Acceptance effects: bound 1.3 times weaker if background is Fe

• Same bound holds for **E > 10**^{17.9} **eV**

• $\Phi^{95}_{source} < \xi 0.04 \text{ km}^{-2} \text{ yr}^{-1}$ for E > 10¹⁸ eV

Bounds on a point-like neutron source at the GC Hybrid Results 10^{17.9} eV < E < 10^{18.5} eV

• 3439 well reconstructed hybrid events (detected by FD and at least 1 SD)

•Better pointing accuracy: 0.7° angular resolution

- Isotropic expectations: shuffling in different epochs
- Optimal top-hat window 0.75° radius centred in Sgr A*:

 $n_{obs} / n_{exp} = 0 / 0.3 \rightarrow \Phi^{95}_{source} < \xi 0.15 \text{ km}^{-2} \text{ yr}^{-1}$

•Acceptance effects: conservative bound if background are heavy nuclei

Bounds on a point-like neutron source at the GC

 $\Phi^{95}_{source} < \xi 0.08 \text{ km}^{-2} \text{ yr}^{-1}$

•Rules out several theoretical predictions for neutrons from GC:

*AGASA excess from n \rightarrow p diffused by galactic B requires $\Phi_n = 6 \text{ km}^{-2} \text{ yr}^{-1}$ (M. Tanco, Watson; Bossa, Mollerach, Roulet - 2003)

TeV γ 's from Sgr A from photo-meson interactions predict $\Phi_n = 30 \text{ km}^{-2} \text{ yr}^{-1}$ (Aharonian, Neronov - 2004)

 •TeV γ's from Sgr A East predict flux of n from uhecr-photodisintegration at the level of present bound (Grasso, Maccione - 2005)
•Bound does not apply straightforwardly to photons

H.E.S.S. measurement at TeV: F(E)=0.06 (E/EeV)^{-2.2} km⁻² yr⁻¹ EeV⁻¹

Naive extrapolation: Φγ ~ 0.04 km⁻² yr⁻¹

Observatory still under construction Data reported here ~ 50% annual exposure with complete Observatory

No significant localized excesses detected in ranges 1 EeV < E < 5 EeV and E > 5 EeV with present statistics. Arrival directions compatible with isotropy.

Our results do not support previous findings of localized excesses in Galactic Centre region at E $\sim 10^{18}$ eV

Significant bound on flux of neutron point-source in Galactic Centre

PERSPECTIVES

Significant increase in statistics

Searches in other energy ranges/angular windows

Searches for large scale anisotropies

Searches for autocorrelation and correlation with astronomical objects