Higgs Physics at the Linear Collider

Thorsten Kuhl DESY

Content:

- Introduction
- Model independent : recoil mass
- SM like Higgs boson: mass, branching ratios, CP, self coupling
- Higgs pair production

New: Physics, machine, detector and tools performance

Linear Collider

 e^+e^- -Linear Collider \sqrt{s} =350 ... 1000 GeV, Luminosity \approx 500fb⁻¹

Detector:

Momentum resolution:

 $\delta(1/p) = 7 \times 10^{-5}/\text{GeV} (1/10 \times \text{LEP, LHC})$ Jet energy resolution:

 $\delta E/E = 0.3/\sqrt{E(GeV)}$ (<1/2×LEP) Impact parameter resolution:

 $\delta d=(5\oplus 10/p(GeV))\mu m (1/3\times SLD)$ Hermeticity:

up to ≈ 25 mrad

Thorsten Kuhl

Physics at the LC

Higgs:

Cross section fbpb

 \Rightarrow O(10⁴-10⁵) event per 500 fb⁻¹

Standard Model Background:

O(few 10⁷) events

Thorsten Kuhl

EWSB Higgs

Most possible scenario if Higgs exist:

Discovery and first measurements at LHC

Linear Collider:

High precision measurements to

Establish Higgs mechanism as the mechanism responsible for electro-weak symmetry breaking

- Is it a Higgs-Boson ?
- Is it responsible for mass generation ?
- Does the Higgs field have a non-zero v.e.v. ?
- Structure of Higgs sector ?

Higgs production at the LC

Dominant production processes at LC:

Thorsten Kuhl

Low

Recoil mass

Model independent: <u>"seeing it without looking at it"</u>

```
Recoil mass spectrum: HZ \rightarrow XII (I=\mu,e)
```


 $\Delta\sigma/\sigma \approx 3\%$ $\Delta m \approx 110 \text{ MeV}$

Benchmark for momentum resolution: $\delta(1/p) = 7 \times 10^{-5}/\text{GeV}$

 \Rightarrow High precession measurement

Thorsten Kuhl

Mass measurements

Measurement of bbqq and bbll using kinematic Fits

Studied:

- Combined accuracy: 40 MeV
- Energy shift \Rightarrow mass shift (linear)
- Beam Energy spread (table)
- Theoretical uncertainties: 3 GeV (today) ⇒ 0.5 GeV

Higgs branching ratios

Start to redo analysis with better detector description \Rightarrow results converging

Thorsten Kuhl

Hadronic Higgs BR

Reanalyzed with much more realistic flavour tag

TESLA Design Report (TDR): jet wise b-tag parametrization

Now: Using track wise vertex finding (ZVTOP) and NNet

Tracks in jet as probability desity tubes

Vertex: overlap

Comparison (qq at 91.2 GeV):

Full : Geant 3 (Brahms) Open: Fast simulation (Simdet)

Thorsten Kuhl

Hadronic branching ratio

Result: same order but more realistic detector description

Thorsten Kuhl

$H \rightarrow \gamma \gamma$

Looking for:

- two photons
- missing energy
- transverse momentum

Full background up to 8 fermions included: mostly ννγγ

Accuracy: 5%

What can we learn from BR?

Thorsten Kuhl

H^0 or A^0

From simulated detector signals, luminosity of 1 ab⁻¹:

Reconstructed acoplanarities:

A^o: 0.270 ± 0.076

H⁰: -0.165 \pm 0.078

Clear differentiation between H⁰ and A⁰

Using $H \rightarrow \tau \tau$ with $\tau \rightarrow \rho \nu$ τ decay plane $\Rightarrow \tau$ spin information

 $\tau\tau$ correlation \Rightarrow Higgs CP

Thorsten Kuhl

Higgs potential reconstruction

Thorsten Kuhl

H^o >

Higgs self coupling cont.

- Likelihood curves for $\Lambda = \Lambda_{SM}$:
- Result (CL=95%):

$$\Lambda/\Lambda_{\rm SM}$$
 = 1.00 +0.13 -0.11

Thorsten Kuhl

Higgs pair production

Heavy SUSY Higgs at LHC:

HA \rightarrow bbbb and HA \rightarrow bb $\tau\tau/\tau\tau$ bb: 5 σ discovery possible up to Σ m = $\sqrt{s} - 30$ GeV

Observation and mass/BR/width(?) measurements deep into the LHC wedge region at 800-1000 GeV LC

Thorsten Kuhl

Summary

(Together with LHC measurements)

- LC crucial to establish the
 - Higgs mechanism
 - origin of mass generation
 - character of the Higgs boson

High precision measurement of the Higgs properties

- mass and cross sections
- branching ratios
- self couplings
- CP quantum numbers

Study detector and beam related issues