

Recent Results From the AMANDA Experiment

Brennan Hughey University of Wisconsin – Madison for the AMANDA Collaboration

Rencontres du Vietnam August 6-11, 2004

The AMANDA Collaboration

United States Bartol Research Institute UC Berkeley UC Irvine Pennsylvania State UW Madison UW River Falls LBNL Berkeley

Europe

VUB-IIHE, Brussel ULB-IIHE, Bruxelles Université de Mons-Hainaut Imperial College, London DESY, Zeuthen Mainz Universität Wuppertal Universität Stockholms Universitet Uppsala Universitet Kalmar Universitet

South America U. Simón Bolivar, Caracas

Antarctica South Pole Station

~150 members

The AMANDA Detector

Ice Properties

South Pole ice:

- Very transparent
- Absorption length ~ 100 m at 400 nm
- Scattering length ~ 20 m at 400 nm
- Measured with in-situ light sources and with atmospheric muons

Event Reconstruction

Reconstruction accuracies :

- Muons:
 - directional error: 2.0° 2.5°
 - s[log₁₀(E/TeV)] : 0.3 0.4
 - coverage: 2p
- Cascades:
 - directional error: 30° 40°
 - s[log₁₀(E/TeV)] : 0.1 0.2
 - coverage: 4p
- Primary cosmic rays (with SPASE-2):
 - s[log₁₀(E/TeV)] : 0.07 0.1

AMANDA Topics

Primary Cosmic Ray Spectrum

- atmospheric muons/neutrinos
- Cosmic Ray composition (with SPASE-2 surface array)

Cosmic Ray origins (acceleration sites: AGN, GRBs)

extra-terrestrial flux at > TeV energies

Dark matter/ exotic particles

- WIMP annihilation in the Sun/Earth
- magnetic monopoles

Supernova monitor of the Milky Way

- burst of low energy cascades leads to overall noise increase
- AMANDA will join Super Nova Early Warning System (SNEWS) later this year

Energy Ranges For AMANDA Analyses

Energy range	nergy range analysis			
~MeV	SN v	Supernovae		
GeV - ~TeV	atm v Dark matter	atmosphere Sun/Earth		
TeV - PeV	diffuse cascades point sources	AGN, GRB		
PeV – EeV	UHE	AGN, TD		
> FeV	FHF	?		

Agreed collaboration strategy: **Analyses are done 'blind'**. cuts optimized on a % of data or on a time-scrambled data set. (except for SN searches where analysis is based on detector noise rate monitoring)

Atmospheric Neutrinos

Atmospheric spectrum provides test of detector

Matches lower energy Frejus data

Downgoing muon background rejected using a neural network

First spectrum above 1 TeV

Used to set limit on extraterrestrial E⁻² diffuse flux in the range 100-300 TeV

 $E^2 F_{n_m}(E) < 2.87 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ Includes 33% systematic uncertainty

1997 results PRL 90, 251101 (2003)

Diffuse Flux Search using Cascades

2000 data 197.2 days livetime

Cascade analysis has 4p coverage

Event selection based on -energy -topology

Signal MC: E⁻² energy spectrum

Ultra-High Energy Search (PeV - EeV)

Earth opaque above 10¹⁶ eV Look at downgoing muons and events near horizon

Characteristics: few 1 p.e. Peaks long muon tracks and bright events

 $N_{obs} = 5$ events $N_{bar} = 4.6 \pm 36\%$ events

Diffuse Results Summary

Search for High Energy Point Sources

Skymap in equatorial coordinates

No Excess observed

results consistent with atmos. background

3369 events observed 3438 events expected background

Search in sky for clustering of events :

- Grid search : sky subdivided in 300 bins of ~ 7° x 7°
- Shift grid to cover boundaries
- Pointing resolution ~ 2.5 $^{\circ}$
- Optimized in each declination band
- Optimized for E⁻² and E⁻³ spectra

Neutrino Point Sources: Unbinned Analysis

Search for **n** coincident with GRBs

Preliminary	7
AMANDA	1997-2000

Year	Detector	N _{Bursts}	N _{BG, Pred}	N _{Obs}	Event U.L.
1997	B-10	78 (BT)	0.06	0	2.41
1998	B-10	94 (BT)	0.20	0	2.24
1999	B-10	96 (BT)	0.20	0	2.24
2000	A-II (2 analyses)	44 (BT)	0.83/0.40	0/0	1.72/2.05
97-00	B-10/A-II	312 (BT)	1.29	0	1.45
2000	A-II	24 (BNT)	0.24	0	2.19
2000	A-II	46 (New)	0.60	0	1.88
2000	A-II	114 (All)	1.24	0	1.47

(BT = BATSE Triggered BNT = BATSE Non-Triggered

Low background analysis due to space <u>and</u> time coincidence!

Data required to be stable within an hour on either side of GRB

Background taken ±5 minutes around burst

97-00 Flux Limit at Earth^{*}: $E^{2}F_{n} = 4.10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

New = IPN & GUSBAD)

*For 312 bursts w/ WB Broken Power-Law Spectrum (E_{break}= 100 TeV, G_{Bulk}= 300)

Cascade Channel Rolling GRB Search

2-step process:

- 1.) use Support Vector Machine to reject muon and atmospheric neutrino backgrounds using signal Monte Carlo based on assumption of 300 TeV break energy broken power law energy spectrum
- 2.) scan through entire data set looking for significant clumping of surviving events ("significant" defined as 99% unlikely to have a random poissonian fluctuation to this level)

Complements satellite-coincident searches:

more difficult background rejection due to lack of space-time constraints, but satellites miss many GRBs, especially since loss of BATSE in early 2000

WIMP Annihilations in the Sun/Earth

CC \longrightarrow qq, WW, ZZ, HH \longrightarrow **n**

Sun analysis possible due to improved Combined 1997-99 data sets reconstruction capability for horizontal for Earth WIMP searches. tracks in AMANDA-II compared with B10 Preliminary Current results from 2001 data set 10⁶ J. Edsiö. 2004 φ_µ (km⁻² yr⁻¹ Muon flux from the Sun (km⁻² yr⁻¹ MANDA 97-99 data BAKSAN 1997 Ethr = 1 GeV BAKSAN 1997 10⁵ $\sigma_{SI} > \sigma_{SI}^{lim}$ **IACRO 2002 ACRO 2002** SUPER-K 2004 10 5 SUPER-K 2002 prel IceCube Best-Case $0.05 < \Omega_{\rm c}h^2 < 0.2$ **10**⁴ AMANDA-II, 2001 Eth = 1 GeV New solar system diffusion σelim = CDMS 2004 10⁴ 10^{3} 10² 10 3 **Disfavored by** direct search 10 (CDMS II 10² 1 $\sigma_{\rm SI} > \sigma_{\rm SI}^{\rm lim}$ + σ_{SI} < σ^{lim} -1 10 10 -2 0.05 10 3 10² 10 10 10 1 10³ Neutralino Mass (GeV/c²) 2 10 10 10 No WIMP signal found Neutralino Mass (GeV/c²) slide 17

No extraterrestrial signals observed yet, but limits are tightening

First Results from AMANDA-II now published 2000 point source analysis in PRL 92 no. 7 (071102)

Multi-year papers and analyses in progress

Detector improvements

Digitized Waveform readout since 2003 Understanding of ice properties reduces systematic errors

IceCube on horizon.....

• Shown on diffuse limits summary plot

• **S**91

F.W. Stecker et al., Phys. Rev. Lett. 66 (1991) 2697 and Erratum-ibid. 69 (1992) 2738

• S96

F.W. Stecker and M.H. Salamon, Space Sci. Rev. 75 (1996) 341

• P97

R.J. Protheroe, arXiv: astro-ph/9607165

• M95

K. Mannheim, Astropart. Phys. 3 (1995) 295