Charm results from CLEOIII, CLEO-c

Steven Dytman Univ. of Pittsburgh

OUTLINE:

- 1. Introduction to CLEO
- 2. D 3-body decays
- 3. Semileptonic D decay

First results from 60pb⁻¹ CLEO-c data set taken fall 2003/winter 2004!

 $\psi(3770) \rightarrow D^0 \overline{D^0}$ $\overline{D^0} \rightarrow K^+ \pi^-, D^0 \rightarrow K^- e^+ \nu$

What is CLEO?

New drift chamber (ZD) for vertexing

Techniques

B factories, pp̄ colliders
Tag with D*+→D⁰ π⁺, D*-→D⁰π⁻.
Background suppression excellent→poor
Charm factory, ψ(3770) → D⁰D⁰ (~rest)
Tag with common decay, e.g. D⁰→K⁻π⁺
threshold ⇒cleaner, smaller cross section
Exploit quantum correlations

CLEO III data:

CLEO-c data:

Charm Dalitz Plot Analyses

New & improved hadronic BF
Study light meson properties
Search for DD mixing, CP violation

CLEO II.V: $D \rightarrow K_s \eta \pi^0$

- •First observation of this mode!
- •Small sample (155 events), but very clean.
- •With more statistics, will have impact on κ , σ puzzle

How do B and D factories compare? e.g. $D^0 \rightarrow K^-\pi^+\pi^0$ (BF=13.0%)

CLEO-c status, goals

Big goal is to constrain CKM matrix various labs, theory all have a role

CLEO-c + Lattice QCD +B factories

CLEO-c

CLEO-c + Lattice QCD +B factories + ppbar

theory

 $\begin{array}{c} \text{upper f}_{0} \\ \circ f_{+} \\ * \text{ experiment} \\ \hline D^{0} \rightarrow \pi l v \\ q^{2} (\text{GeV}^{2}) \end{array}$

 \overline{q}

Phenom is interesting, incomplete Lattice QCD (Okamoto, 2004) Interesting interplay of weak and strong interaction!

PDG on D semileptonic decays

- $\bullet D \to K^{\text{-}}e^{+}\nu$
- $\bullet D \to K^{\text{-}} \mu^{+} \nu$
- $\bullet D \to \pi^- e^+ \nu$
- •D \rightarrow K*-e⁺v
- •D $\rightarrow \rho$ -e⁺v
- $3.58 \pm 0.18\%$ $3.19 \pm 0.17\%$ $0.36 \pm 0.06\%$ $2.15 \pm 0.35\%$ 2222

Cabibbo suppr. vector vector

•Data on Form factors sketchy

CLEO3 has new results (final) for $D \rightarrow \pi^- e^+ v$ CLEOc has preliminary results for all channels!

$CLEO III D \rightarrow (K, \pi) e v$

CLEO-c tagging

Modes: $K^{-}\pi^{+}$, $K^{-}\pi^{+}\pi^{0}$, $K^{-}\pi^{+}\pi^{0}\pi^{0}$, $K^{-}\pi^{+}\pi^{+}\pi^{-}$, $K_{s}\pi^{+}\pi^{-}$, $K_{s}\pi^{+}\pi^{-}\pi^{0}$, $K_{s}\pi^{0}$, $\pi^{-}\pi^{+}\pi^{0}$, $K^{-}K^{+}$

 $\Sigma BF=44.9\%$ $\Sigma (BF*\varepsilon_{tag})=2*12.8\%$ =25.6%

Total= 59432 ± 364 tagged events

CLEO-c has better event definition e.g., $D \rightarrow \pi e v$

CLEO-c $D \rightarrow Kev, K^*ev$

 $D \rightarrow Kev: 1405 \pm 39$ events

 $D \rightarrow K^* ev: N=88.0 \pm 9.7$

Something new! $D \rightarrow \rho$ semileptonic decay

 $N(D^0 \rightarrow \rho^- e^+ \nu) = 30.1 \pm 5.8$

BF with CLEO-c now (60 pb^{-1})

mode	CLEO-c	PDG
$B(\mathrm{D}{\rightarrow}K^{-}e^{+}\nu)$	3.52±0.10±0.25%	3.58±0.18%
$B(\mathrm{D} {\rightarrow} \pi^{-} e^{+} v)$	0.25±0.03±0.02%	0.36±0.06%
$B(D {\rightarrow} K^{*-} e^+ \nu)$	2.07±0.23±0.18%	2.15±0.35%
$B(D \to \rho^- e^+ v)$	0.19±0.04±0.02%	_
$\frac{\mathbf{B}(D^0 \to \pi e \nu)}{\mathbf{B}(D^0 \to K e \nu)} \mathbf{N}$	0.070±0.007±0.003	0.101±0.017

CLEO III: 0.082 ±0.006 ±0.005

CLEO-c projected $(3fb^{-1})$

•BF improvement dramatic
•FF, V_{cd}, V_{cs} separated with lattice FF(0).
•q² resolution~0.03 GeV²
• δV_{cd}/V_{cd}≅1.7%

Decay modes

Summary, Outlook

- New CLEO II.V, III results
 - Observe D $\rightarrow K_s \eta \pi^0$ decay BF for first time (η is unusual)
 - $D \rightarrow \pi l \nu$ and $D \rightarrow K l \nu$ form factor meas. (first time for π)
- CLEO-c results are coming quickly!!
 - − D→ π ev,Kev, K*ev BF measured, accuracy ≈ PDG
 - $D \rightarrow \rho e \nu$ BF measured for first time
 - High quality form factor, V_{cd} , V_{cs} meas. to come
- CLEO-c and B factories are complementary
 - Statistics will be similar with 3 fb⁻¹ and 1 ab⁻¹, resp.
 - CLEO-c has advantage where bkgd suppression important