Searching for new physics at future accelerators

R. Barbieri Scuola Normale Superiore and INFN, Pisa

5th Rencontres du Vietnam, Hanoi, 5-11 Aug 04

Particle Physics in one page

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i \bar{\psi} D \psi \\ &+ \psi_i \lambda_{ij} \psi_j h + h.c. \\ &+ |D_{\mu}h|^2 - V(h) \\ &+ L_i \lambda^{\nu}_{ij} N_j + (N_i M_{ij} N_j) \end{aligned}$$

The gauge sector (1)

The flavor sector (2)

The EWSB sector (3)

The v-mass sector (4)

(1) best tested, at least to per-mille accuracy
(2) + (4) : main developments of last 5 years, different in nature

(3) The ElectroWeak Symmetry Breaking sector

[*The origin of mass? What distinguishes the* γ *from the W, or the electron from the neutrino? (not electric charge!)*]

Consistent with (indirect) observations? Yes, so far

Low-energy + Z-pole + LEP2

Type of fit	$10^3 \widehat{S}$	$10^3 \widehat{T}$	$10^3 Y$	10^3W
One-by-one (light Higgs)	0.0 ± 0.5	0.1 ± 0.6	0.0 ± 0.6	-0.3 ± 0.6
One-by-one (heavy Higgs)		2.7 ± 0.6		
All together (light Higgs)	0.0 ± 1.3	0.1 ± 0.9	0.1 ± 1.2	-0.4 ± 0.8
All together (heavy Higgs)	-0.9 ± 1.3	2.0 ± 1.0	0.0 ± 1.2	-0.2 ± 0.8

B, Pomarol, Rattazzi, Strumia

No: Direct $E > G_F^{-1/2}$ only scantily No: $\mu, \lambda \Rightarrow m_h, G_F(orM_Z)$

Theories, models, scenarios, ... of EWSB \Rightarrow Supersymmetry (in various forms) \Rightarrow Higgs as PseudoGoldstone Boson (PGB) \Rightarrow Composite Higgs \Rightarrow Technicolor \Rightarrow Higgsless \Rightarrow *Extra-dimensions* \Rightarrow . . .

Need a guiding principle (at least for this talk)

The Calculability Principle

(too narrow a view?)

Look for models where the Fermi scale (or the Z-mass) can be related to some other physical scale, call it Λ_{NP} , in a calculable manner

Supersymmetry (MSSM)

The merits:

- \Rightarrow Gauge coupling unification
- \Rightarrow Quartic Higgs coupling predicted: $m_h^{tree} \leq M_Z$
- \Rightarrow A Dark Matter candidate
- \Rightarrow Smootly passes the EWPT

Georgi, Dimopoulos B, Ferrara, Savoy Chamseddine, Arnowitt, Nath Hall, Lykken, Weinberg Supersymmetry (MSSM): the "problem"

Where are the superpartners? Where is the Higgs?

Where is
$$\Lambda_{susy}$$
?

In the MSSM Λ_{susy} "typically" within reach of LHC How typical is "typical"?

$$M_Z^2 = (90 GeV)^2 \left(\frac{\langle m_t \rangle}{200 GeV}\right)^2 \log \frac{\pi_{UV}}{\langle m_t \rangle} \pm \text{ etc.}$$
$$\Lambda_{susy} \equiv \langle m_t \rangle \log = 5 \div 30$$

Without accidental cancellations, $< m_{\tilde{t}} >$ well below what is needed to hide the Higgs

> $m_h|_{th} = m_h^{tree} (\leq M_Z) + m_h^{rad} (\log < m_{\tilde{t}} >)$ $m_h|_{exp} > 115 GeV \implies < m_{\tilde{t}} > \geq 500 GeV$

Supersymmetry: the reactions to the problem

I. Never mind a few % accidental tuning LHC ⊕ *LC can systematically explore ~ all of the MSSM parameter*

space up to a per-mille tuning

2. Increase m_h^{tree} by an extra bit of quartic coupling

$$\lambda^{tree} = \frac{g^2 + g'^2}{8} + \delta \lambda^{tree}$$

NMSSM, a new gauge contribution, ...

Haber, Sher ... Harnik et al Batra et al

 $\Rightarrow m_h^{\uparrow} \leq 150$ GeV, or even significantly higher

Things to watch: gauge unification, EWPT if m_h grows

Phenomenology: in the NMSSM, two extra neutral scalars, sometimes light

3. Reduce the tuning in $M_Z = \Lambda_{Susy} f(a_i)$

E.g., among several possibilities:

Susy broken by boundary condition on a 5th dimension (a segment of length $\pi R/2$)

Merits: 1 single Higgs, no fine-tuning

Signal: the stop as the LSP, stable for collider searches

 $\tilde{t}\bar{u} \equiv T_0$ $\tilde{t}\bar{d} \equiv T^+$: low- β tracks with anomalous dE/dx $m_{\tilde{t}} = 500 \div 1300 GeV$ most other sparticles at $1/R = 1.5 \div 4TeV$ $m_h = 110 \div 125 GeV$

Price: give up gauge unification and the DM candidate

B, Hall, NomuraMarti, PomarolB, Papucci, Marandella

4. The tuning is not a criterium at all [inspired by frustration from the CC problem and ST develop.s]

There are regions in the MSSM parameter space highly tuned, but with a striking signal

"Split-Supersymmetry": $m_{\tilde{f}} >> m_{\tilde{g}}, m_{\tilde{h}}$ A long lived \div effectively stable gluino $\tilde{g}g \equiv R_0$ $\tilde{g}q\bar{q} \equiv M_0$ $\tilde{g}u\bar{d} \equiv M_1$ while keeping all "standard" MSSM merits, except naturalness

 $m_h \leq 150 \div 160 GeV$

Arkani-Hamed, Dimopoulos Giudice, Romanino

Strongly interacting models of EWSB

We used to think: When calculable, they don't work

Why the new interest, then? Mostly from extra-D, which can improve calculability (sic!)

Concrete realizations

Several, mostly dependent on the choice of G_5 , G_{UV} , G_{IR} Inspection of models still under way: Higgsless, composite Higgs, ... Csaki et al Agashe et al, ...

The closest to a realistic, calculable model:

The Higgs as a PGB, like the π^+ in QCD \oplus QED of massless quarks

The history : $4D \Longrightarrow 5D \Longrightarrow 4D$

(in fact, one wants to do better than this)

Georgi, Kaplan Arkani-Hamed, Cohen, Georgi Contino, Nomura, Pomarol Scrucca, Serone, Silvestrini

Back to 4D: the little Higgs models

Keep the essence of 5D, while avoiding its constraints by suitable (somewhat *ad hoc*) tricks

 $G_5 \simeq G_{gl}$ broken to H_{gl} $G_{IR} \simeq H_{gl}$ $G_{UV} \simeq G_{gauge}$

Problems: give the Higgs a quartic self-coupling and a top Yukawa consistent with observations

(Too) many models:

The "littlest" $f = \Lambda_{LH}$ The "simplest"Global $SU(5) \stackrel{f}{\Longrightarrow} SO(5)$ $(SU(3)XU(1))^2 \stackrel{f}{\Longrightarrow} (SU(2)XU(1))^2$ Gauge $(SU(2)XU(1))^2 \Longrightarrow SU(2)XU(1)$ $SU(3)XU(1) \Longrightarrow SU(2)XU(1)$ Arkani-Hamed et alKaplan, Schmaltz

Phenomenology of Higgs as PGB

Perelstein, Peskin, Pierce

t \implies T (T', T", ...) $m_T \ge 1 \div 2TeV$ $pp \rightarrow T + j + X$ $(qb \rightarrow q'T)$ $T \rightarrow th, tZ, bW$ LHC: Events/300 fb^{-1} $(m_T = 2TeV) \approx 10^3$

W,Z \implies W_H, Z_H (V', V", ...) $m_V \ge 1 \div 2TeV$ production rates and decay modes model dependent LHC: Events/ $300fb^{-1}$ ($m_V = 2TeV$) $\le 10^5$ $m_h = ?$

Question: How low can f be? T-parity, LEP2 constraints, ...

Cheng, Low Schmaltz

A road map to the discovery/test of EWSB physics (cum grano salis, please)									
	MS NMS	SM SSM	5D-Susy		Split- Susy∗		Higgs as PGB		
LHC	\checkmark	~	\checkmark	~	\checkmark	~		~	
LC(500 GeV)	\checkmark	\checkmark		1	\checkmark	\checkmark	_	~	
LHC \oplus LC	ve signit	ery ficant	add in evid	ndirect ence	cruci te	al for est	add in evid	direct ence	
$ \sqrt{\frac{1}{\sqrt{1}{\sqrt$									

High-energy extrapolation of the sfermion masses from measurements at a LC

(in a favorable point of the MSSM par. space) Allanach et al

95% sensitivity reaches for a basic choice of contact interactions

 $\mathcal{L} = \frac{4\pi}{\Lambda^2} (\bar{f}\gamma_\mu f)_{L,R} (\bar{f}\gamma_\mu f)_{L,R}$

		LHC		LC					
		Λ [TeV]			Λ [TeV]				
model		LL	RR	LR	RL	LL	RR	LR	RL
eeqq:	Λ_+	20.1	20.2	22.1	21.8	64	24	92	22
	Λ_{-}	33.8	33.7	29.2	29.7	63	35	92	24
$ee\mu\mu$:	Λ_+					90	88	72	72
	Λ_{-}					90	88	72	72
eeee:	Λ_+					44.9	43.4	52.4	52.4
	Λ_{-}					43.5	42.1	50.7	50.7

LHC/LC Study Group

LC ($L_{int} = 1$ ab^{-1} and polarized beams) Current LEP2 in the 10 ÷ 25 TeV range

Estimated uncertainties on precision electroweak observables

	now	LHC	LC	Giga-Z
$\delta sin^2 \Theta_{eff}(10^{-5})$	16 (?)	15	?	1.3
$\delta M_W[MeV]$	34	15	10	7
$\delta M_t[GeV]$	4.3	1.0	0.2	0.1
$\Rightarrow rac{\delta m_h}{m_h}$	60%	15-20%	10-15%	5-10%

 $sin^2 \Theta_{eff}(M_t, m_h, \alpha(M_Z))$ $M_W(M_t, m_h, \alpha(M_Z))$

Conclusions (specific)

 \Rightarrow Two physical principles behind "calculable models" of EWSB:

Supersymmetry: Has far reaching consequences. Its specific realizations (and the corresponding signals) still debated

Higgs as PGB: Resurrected by 5D, though not easy to make it work. 4D Little Higgs models consistent (somewhat ad hoc?)

 \Rightarrow If naturalness is a good guide, the LHC will find signals of new physics

⇒ For their full interpretation, a LC at 500 GeV often (though not always) very significant

Conclusions (general)

- EWSB as the most (?) compelling/promising open problem in particle physics
- Energies above the Fermi scale only scantily explored so far in a direct way!
- A variety of options (although not on equal footing). Best to be open minded
- Uncovering the mechanism of EWSB ⇒ a revolution in fundamental physics